Skip to content

strands.telemetry

Telemetry module.

This module provides metrics and tracing functionality.

strands.telemetry.metrics

Utilities for collecting and reporting performance metrics in the SDK.

EventLoopMetrics dataclass

Aggregated metrics for an event loop's execution.

Attributes:

Name Type Description
cycle_count int

Number of event loop cycles executed.

tool_metrics Dict[str, ToolMetrics]

Metrics for each tool used, keyed by tool name.

cycle_durations List[float]

List of durations for each cycle in seconds.

traces List[Trace]

List of execution traces.

accumulated_usage Usage

Accumulated token usage across all model invocations.

accumulated_metrics Metrics

Accumulated performance metrics across all model invocations.

Source code in strands/telemetry/metrics.py
@dataclass
class EventLoopMetrics:
    """Aggregated metrics for an event loop's execution.

    Attributes:
        cycle_count: Number of event loop cycles executed.
        tool_metrics: Metrics for each tool used, keyed by tool name.
        cycle_durations: List of durations for each cycle in seconds.
        traces: List of execution traces.
        accumulated_usage: Accumulated token usage across all model invocations.
        accumulated_metrics: Accumulated performance metrics across all model invocations.
    """

    cycle_count: int = 0
    tool_metrics: Dict[str, ToolMetrics] = field(default_factory=dict)
    cycle_durations: List[float] = field(default_factory=list)
    traces: List[Trace] = field(default_factory=list)
    accumulated_usage: Usage = field(default_factory=lambda: Usage(inputTokens=0, outputTokens=0, totalTokens=0))
    accumulated_metrics: Metrics = field(default_factory=lambda: Metrics(latencyMs=0))

    @property
    def _metrics_client(self) -> "MetricsClient":
        """Get the singleton MetricsClient instance."""
        return MetricsClient()

    def start_cycle(
        self,
        attributes: Optional[Dict[str, Any]] = None,
    ) -> Tuple[float, Trace]:
        """Start a new event loop cycle and create a trace for it.

        Args:
            attributes: attributes of the metrics.

        Returns:
            A tuple containing the start time and the cycle trace object.
        """
        self._metrics_client.event_loop_cycle_count.add(1, attributes=attributes)
        self._metrics_client.event_loop_start_cycle.add(1, attributes=attributes)
        self.cycle_count += 1
        start_time = time.time()
        cycle_trace = Trace(f"Cycle {self.cycle_count}", start_time=start_time)
        self.traces.append(cycle_trace)
        return start_time, cycle_trace

    def end_cycle(self, start_time: float, cycle_trace: Trace, attributes: Optional[Dict[str, Any]] = None) -> None:
        """End the current event loop cycle and record its duration.

        Args:
            start_time: The timestamp when the cycle started.
            cycle_trace: The trace object for this cycle.
            attributes: attributes of the metrics.
        """
        self._metrics_client.event_loop_end_cycle.add(1, attributes)
        end_time = time.time()
        duration = end_time - start_time
        self._metrics_client.event_loop_cycle_duration.record(duration, attributes)
        self.cycle_durations.append(duration)
        cycle_trace.end(end_time)

    def add_tool_usage(
        self,
        tool: ToolUse,
        duration: float,
        tool_trace: Trace,
        success: bool,
        message: Message,
    ) -> None:
        """Record metrics for a tool invocation.

        Args:
            tool: The tool that was used.
            duration: How long the tool call took in seconds.
            tool_trace: The trace object for this tool call.
            success: Whether the tool call was successful.
            message: The message associated with the tool call.
        """
        tool_name = tool.get("name", "unknown_tool")
        tool_use_id = tool.get("toolUseId", "unknown")

        tool_trace.metadata.update(
            {
                "toolUseId": tool_use_id,
                "tool_name": tool_name,
            }
        )
        tool_trace.raw_name = f"{tool_name} - {tool_use_id}"
        tool_trace.add_message(message)

        self.tool_metrics.setdefault(tool_name, ToolMetrics(tool)).add_call(
            tool,
            duration,
            success,
            self._metrics_client,
            attributes={
                "tool_name": tool_name,
                "tool_use_id": tool_use_id,
            },
        )
        tool_trace.end()

    def update_usage(self, usage: Usage) -> None:
        """Update the accumulated token usage with new usage data.

        Args:
            usage: The usage data to add to the accumulated totals.
        """
        self._metrics_client.event_loop_input_tokens.record(usage["inputTokens"])
        self._metrics_client.event_loop_output_tokens.record(usage["outputTokens"])
        self.accumulated_usage["inputTokens"] += usage["inputTokens"]
        self.accumulated_usage["outputTokens"] += usage["outputTokens"]
        self.accumulated_usage["totalTokens"] += usage["totalTokens"]

    def update_metrics(self, metrics: Metrics) -> None:
        """Update the accumulated performance metrics with new metrics data.

        Args:
            metrics: The metrics data to add to the accumulated totals.
        """
        self._metrics_client.event_loop_latency.record(metrics["latencyMs"])
        self.accumulated_metrics["latencyMs"] += metrics["latencyMs"]

    def get_summary(self) -> Dict[str, Any]:
        """Generate a comprehensive summary of all collected metrics.

        Returns:
            A dictionary containing summarized metrics data.
            This includes cycle statistics, tool usage, traces, and accumulated usage information.
        """
        summary = {
            "total_cycles": self.cycle_count,
            "total_duration": sum(self.cycle_durations),
            "average_cycle_time": (sum(self.cycle_durations) / self.cycle_count if self.cycle_count > 0 else 0),
            "tool_usage": {
                tool_name: {
                    "tool_info": {
                        "tool_use_id": metrics.tool.get("toolUseId", "N/A"),
                        "name": metrics.tool.get("name", "unknown"),
                        "input_params": metrics.tool.get("input", {}),
                    },
                    "execution_stats": {
                        "call_count": metrics.call_count,
                        "success_count": metrics.success_count,
                        "error_count": metrics.error_count,
                        "total_time": metrics.total_time,
                        "average_time": (metrics.total_time / metrics.call_count if metrics.call_count > 0 else 0),
                        "success_rate": (metrics.success_count / metrics.call_count if metrics.call_count > 0 else 0),
                    },
                }
                for tool_name, metrics in self.tool_metrics.items()
            },
            "traces": [trace.to_dict() for trace in self.traces],
            "accumulated_usage": self.accumulated_usage,
            "accumulated_metrics": self.accumulated_metrics,
        }
        return summary

add_tool_usage(tool, duration, tool_trace, success, message)

Record metrics for a tool invocation.

Parameters:

Name Type Description Default
tool ToolUse

The tool that was used.

required
duration float

How long the tool call took in seconds.

required
tool_trace Trace

The trace object for this tool call.

required
success bool

Whether the tool call was successful.

required
message Message

The message associated with the tool call.

required
Source code in strands/telemetry/metrics.py
def add_tool_usage(
    self,
    tool: ToolUse,
    duration: float,
    tool_trace: Trace,
    success: bool,
    message: Message,
) -> None:
    """Record metrics for a tool invocation.

    Args:
        tool: The tool that was used.
        duration: How long the tool call took in seconds.
        tool_trace: The trace object for this tool call.
        success: Whether the tool call was successful.
        message: The message associated with the tool call.
    """
    tool_name = tool.get("name", "unknown_tool")
    tool_use_id = tool.get("toolUseId", "unknown")

    tool_trace.metadata.update(
        {
            "toolUseId": tool_use_id,
            "tool_name": tool_name,
        }
    )
    tool_trace.raw_name = f"{tool_name} - {tool_use_id}"
    tool_trace.add_message(message)

    self.tool_metrics.setdefault(tool_name, ToolMetrics(tool)).add_call(
        tool,
        duration,
        success,
        self._metrics_client,
        attributes={
            "tool_name": tool_name,
            "tool_use_id": tool_use_id,
        },
    )
    tool_trace.end()

end_cycle(start_time, cycle_trace, attributes=None)

End the current event loop cycle and record its duration.

Parameters:

Name Type Description Default
start_time float

The timestamp when the cycle started.

required
cycle_trace Trace

The trace object for this cycle.

required
attributes Optional[Dict[str, Any]]

attributes of the metrics.

None
Source code in strands/telemetry/metrics.py
def end_cycle(self, start_time: float, cycle_trace: Trace, attributes: Optional[Dict[str, Any]] = None) -> None:
    """End the current event loop cycle and record its duration.

    Args:
        start_time: The timestamp when the cycle started.
        cycle_trace: The trace object for this cycle.
        attributes: attributes of the metrics.
    """
    self._metrics_client.event_loop_end_cycle.add(1, attributes)
    end_time = time.time()
    duration = end_time - start_time
    self._metrics_client.event_loop_cycle_duration.record(duration, attributes)
    self.cycle_durations.append(duration)
    cycle_trace.end(end_time)

get_summary()

Generate a comprehensive summary of all collected metrics.

Returns:

Type Description
Dict[str, Any]

A dictionary containing summarized metrics data.

Dict[str, Any]

This includes cycle statistics, tool usage, traces, and accumulated usage information.

Source code in strands/telemetry/metrics.py
def get_summary(self) -> Dict[str, Any]:
    """Generate a comprehensive summary of all collected metrics.

    Returns:
        A dictionary containing summarized metrics data.
        This includes cycle statistics, tool usage, traces, and accumulated usage information.
    """
    summary = {
        "total_cycles": self.cycle_count,
        "total_duration": sum(self.cycle_durations),
        "average_cycle_time": (sum(self.cycle_durations) / self.cycle_count if self.cycle_count > 0 else 0),
        "tool_usage": {
            tool_name: {
                "tool_info": {
                    "tool_use_id": metrics.tool.get("toolUseId", "N/A"),
                    "name": metrics.tool.get("name", "unknown"),
                    "input_params": metrics.tool.get("input", {}),
                },
                "execution_stats": {
                    "call_count": metrics.call_count,
                    "success_count": metrics.success_count,
                    "error_count": metrics.error_count,
                    "total_time": metrics.total_time,
                    "average_time": (metrics.total_time / metrics.call_count if metrics.call_count > 0 else 0),
                    "success_rate": (metrics.success_count / metrics.call_count if metrics.call_count > 0 else 0),
                },
            }
            for tool_name, metrics in self.tool_metrics.items()
        },
        "traces": [trace.to_dict() for trace in self.traces],
        "accumulated_usage": self.accumulated_usage,
        "accumulated_metrics": self.accumulated_metrics,
    }
    return summary

start_cycle(attributes=None)

Start a new event loop cycle and create a trace for it.

Parameters:

Name Type Description Default
attributes Optional[Dict[str, Any]]

attributes of the metrics.

None

Returns:

Type Description
Tuple[float, Trace]

A tuple containing the start time and the cycle trace object.

Source code in strands/telemetry/metrics.py
def start_cycle(
    self,
    attributes: Optional[Dict[str, Any]] = None,
) -> Tuple[float, Trace]:
    """Start a new event loop cycle and create a trace for it.

    Args:
        attributes: attributes of the metrics.

    Returns:
        A tuple containing the start time and the cycle trace object.
    """
    self._metrics_client.event_loop_cycle_count.add(1, attributes=attributes)
    self._metrics_client.event_loop_start_cycle.add(1, attributes=attributes)
    self.cycle_count += 1
    start_time = time.time()
    cycle_trace = Trace(f"Cycle {self.cycle_count}", start_time=start_time)
    self.traces.append(cycle_trace)
    return start_time, cycle_trace

update_metrics(metrics)

Update the accumulated performance metrics with new metrics data.

Parameters:

Name Type Description Default
metrics Metrics

The metrics data to add to the accumulated totals.

required
Source code in strands/telemetry/metrics.py
def update_metrics(self, metrics: Metrics) -> None:
    """Update the accumulated performance metrics with new metrics data.

    Args:
        metrics: The metrics data to add to the accumulated totals.
    """
    self._metrics_client.event_loop_latency.record(metrics["latencyMs"])
    self.accumulated_metrics["latencyMs"] += metrics["latencyMs"]

update_usage(usage)

Update the accumulated token usage with new usage data.

Parameters:

Name Type Description Default
usage Usage

The usage data to add to the accumulated totals.

required
Source code in strands/telemetry/metrics.py
def update_usage(self, usage: Usage) -> None:
    """Update the accumulated token usage with new usage data.

    Args:
        usage: The usage data to add to the accumulated totals.
    """
    self._metrics_client.event_loop_input_tokens.record(usage["inputTokens"])
    self._metrics_client.event_loop_output_tokens.record(usage["outputTokens"])
    self.accumulated_usage["inputTokens"] += usage["inputTokens"]
    self.accumulated_usage["outputTokens"] += usage["outputTokens"]
    self.accumulated_usage["totalTokens"] += usage["totalTokens"]

MetricsClient

Singleton client for managing OpenTelemetry metrics instruments.

The actual metrics export destination (console, OTLP endpoint, etc.) is configured through OpenTelemetry SDK configuration by users, not by this client.

Source code in strands/telemetry/metrics.py
class MetricsClient:
    """Singleton client for managing OpenTelemetry metrics instruments.

    The actual metrics export destination (console, OTLP endpoint, etc.) is configured
    through OpenTelemetry SDK configuration by users, not by this client.
    """

    _instance: Optional["MetricsClient"] = None
    meter: Meter
    event_loop_cycle_count: Counter
    event_loop_start_cycle: Counter
    event_loop_end_cycle: Counter
    event_loop_cycle_duration: Histogram
    event_loop_latency: Histogram
    event_loop_input_tokens: Histogram
    event_loop_output_tokens: Histogram

    tool_call_count: Counter
    tool_success_count: Counter
    tool_error_count: Counter
    tool_duration: Histogram

    def __new__(cls) -> "MetricsClient":
        """Create or return the singleton instance of MetricsClient.

        Returns:
            The single MetricsClient instance.
        """
        if cls._instance is None:
            cls._instance = super().__new__(cls)
        return cls._instance

    def __init__(self) -> None:
        """Initialize the MetricsClient.

        This method only runs once due to the singleton pattern.
        Sets up the OpenTelemetry meter and creates metric instruments.
        """
        if hasattr(self, "meter"):
            return

        logger.info("Creating Strands MetricsClient")
        meter_provider: metrics_api.MeterProvider = metrics_api.get_meter_provider()
        self.meter = meter_provider.get_meter(__name__)
        self.create_instruments()

    def create_instruments(self) -> None:
        """Create and initialize all OpenTelemetry metric instruments."""
        self.event_loop_cycle_count = self.meter.create_counter(
            name=constants.STRANDS_EVENT_LOOP_CYCLE_COUNT, unit="Count"
        )
        self.event_loop_start_cycle = self.meter.create_counter(
            name=constants.STRANDS_EVENT_LOOP_START_CYCLE, unit="Count"
        )
        self.event_loop_end_cycle = self.meter.create_counter(name=constants.STRANDS_EVENT_LOOP_END_CYCLE, unit="Count")
        self.event_loop_cycle_duration = self.meter.create_histogram(
            name=constants.STRANDS_EVENT_LOOP_CYCLE_DURATION, unit="s"
        )
        self.event_loop_latency = self.meter.create_histogram(name=constants.STRANDS_EVENT_LOOP_LATENCY, unit="ms")
        self.tool_call_count = self.meter.create_counter(name=constants.STRANDS_TOOL_CALL_COUNT, unit="Count")
        self.tool_success_count = self.meter.create_counter(name=constants.STRANDS_TOOL_SUCCESS_COUNT, unit="Count")
        self.tool_error_count = self.meter.create_counter(name=constants.STRANDS_TOOL_ERROR_COUNT, unit="Count")
        self.tool_duration = self.meter.create_histogram(name=constants.STRANDS_TOOL_DURATION, unit="s")
        self.event_loop_input_tokens = self.meter.create_histogram(
            name=constants.STRANDS_EVENT_LOOP_INPUT_TOKENS, unit="token"
        )
        self.event_loop_output_tokens = self.meter.create_histogram(
            name=constants.STRANDS_EVENT_LOOP_OUTPUT_TOKENS, unit="token"
        )

__init__()

Initialize the MetricsClient.

This method only runs once due to the singleton pattern. Sets up the OpenTelemetry meter and creates metric instruments.

Source code in strands/telemetry/metrics.py
def __init__(self) -> None:
    """Initialize the MetricsClient.

    This method only runs once due to the singleton pattern.
    Sets up the OpenTelemetry meter and creates metric instruments.
    """
    if hasattr(self, "meter"):
        return

    logger.info("Creating Strands MetricsClient")
    meter_provider: metrics_api.MeterProvider = metrics_api.get_meter_provider()
    self.meter = meter_provider.get_meter(__name__)
    self.create_instruments()

__new__()

Create or return the singleton instance of MetricsClient.

Returns:

Type Description
MetricsClient

The single MetricsClient instance.

Source code in strands/telemetry/metrics.py
def __new__(cls) -> "MetricsClient":
    """Create or return the singleton instance of MetricsClient.

    Returns:
        The single MetricsClient instance.
    """
    if cls._instance is None:
        cls._instance = super().__new__(cls)
    return cls._instance

create_instruments()

Create and initialize all OpenTelemetry metric instruments.

Source code in strands/telemetry/metrics.py
def create_instruments(self) -> None:
    """Create and initialize all OpenTelemetry metric instruments."""
    self.event_loop_cycle_count = self.meter.create_counter(
        name=constants.STRANDS_EVENT_LOOP_CYCLE_COUNT, unit="Count"
    )
    self.event_loop_start_cycle = self.meter.create_counter(
        name=constants.STRANDS_EVENT_LOOP_START_CYCLE, unit="Count"
    )
    self.event_loop_end_cycle = self.meter.create_counter(name=constants.STRANDS_EVENT_LOOP_END_CYCLE, unit="Count")
    self.event_loop_cycle_duration = self.meter.create_histogram(
        name=constants.STRANDS_EVENT_LOOP_CYCLE_DURATION, unit="s"
    )
    self.event_loop_latency = self.meter.create_histogram(name=constants.STRANDS_EVENT_LOOP_LATENCY, unit="ms")
    self.tool_call_count = self.meter.create_counter(name=constants.STRANDS_TOOL_CALL_COUNT, unit="Count")
    self.tool_success_count = self.meter.create_counter(name=constants.STRANDS_TOOL_SUCCESS_COUNT, unit="Count")
    self.tool_error_count = self.meter.create_counter(name=constants.STRANDS_TOOL_ERROR_COUNT, unit="Count")
    self.tool_duration = self.meter.create_histogram(name=constants.STRANDS_TOOL_DURATION, unit="s")
    self.event_loop_input_tokens = self.meter.create_histogram(
        name=constants.STRANDS_EVENT_LOOP_INPUT_TOKENS, unit="token"
    )
    self.event_loop_output_tokens = self.meter.create_histogram(
        name=constants.STRANDS_EVENT_LOOP_OUTPUT_TOKENS, unit="token"
    )

ToolMetrics dataclass

Metrics for a specific tool's usage.

Attributes:

Name Type Description
tool ToolUse

The tool being tracked.

call_count int

Number of times the tool has been called.

success_count int

Number of successful tool calls.

error_count int

Number of failed tool calls.

total_time float

Total execution time across all calls in seconds.

Source code in strands/telemetry/metrics.py
@dataclass
class ToolMetrics:
    """Metrics for a specific tool's usage.

    Attributes:
        tool: The tool being tracked.
        call_count: Number of times the tool has been called.
        success_count: Number of successful tool calls.
        error_count: Number of failed tool calls.
        total_time: Total execution time across all calls in seconds.
    """

    tool: ToolUse
    call_count: int = 0
    success_count: int = 0
    error_count: int = 0
    total_time: float = 0.0

    def add_call(
        self,
        tool: ToolUse,
        duration: float,
        success: bool,
        metrics_client: "MetricsClient",
        attributes: Optional[Dict[str, Any]] = None,
    ) -> None:
        """Record a new tool call with its outcome.

        Args:
            tool: The tool that was called.
            duration: How long the call took in seconds.
            success: Whether the call was successful.
            metrics_client: The metrics client for recording the metrics.
            attributes: attributes of the metrics.
        """
        self.tool = tool  # Update with latest tool state
        self.call_count += 1
        self.total_time += duration
        metrics_client.tool_call_count.add(1, attributes=attributes)
        metrics_client.tool_duration.record(duration, attributes=attributes)
        if success:
            self.success_count += 1
            metrics_client.tool_success_count.add(1, attributes=attributes)
        else:
            self.error_count += 1
            metrics_client.tool_error_count.add(1, attributes=attributes)

add_call(tool, duration, success, metrics_client, attributes=None)

Record a new tool call with its outcome.

Parameters:

Name Type Description Default
tool ToolUse

The tool that was called.

required
duration float

How long the call took in seconds.

required
success bool

Whether the call was successful.

required
metrics_client MetricsClient

The metrics client for recording the metrics.

required
attributes Optional[Dict[str, Any]]

attributes of the metrics.

None
Source code in strands/telemetry/metrics.py
def add_call(
    self,
    tool: ToolUse,
    duration: float,
    success: bool,
    metrics_client: "MetricsClient",
    attributes: Optional[Dict[str, Any]] = None,
) -> None:
    """Record a new tool call with its outcome.

    Args:
        tool: The tool that was called.
        duration: How long the call took in seconds.
        success: Whether the call was successful.
        metrics_client: The metrics client for recording the metrics.
        attributes: attributes of the metrics.
    """
    self.tool = tool  # Update with latest tool state
    self.call_count += 1
    self.total_time += duration
    metrics_client.tool_call_count.add(1, attributes=attributes)
    metrics_client.tool_duration.record(duration, attributes=attributes)
    if success:
        self.success_count += 1
        metrics_client.tool_success_count.add(1, attributes=attributes)
    else:
        self.error_count += 1
        metrics_client.tool_error_count.add(1, attributes=attributes)

Trace

A trace representing a single operation or step in the execution flow.

Source code in strands/telemetry/metrics.py
class Trace:
    """A trace representing a single operation or step in the execution flow."""

    def __init__(
        self,
        name: str,
        parent_id: Optional[str] = None,
        start_time: Optional[float] = None,
        raw_name: Optional[str] = None,
        metadata: Optional[Dict[str, Any]] = None,
        message: Optional[Message] = None,
    ) -> None:
        """Initialize a new trace.

        Args:
            name: Human-readable name of the operation being traced.
            parent_id: ID of the parent trace, if this is a child operation.
            start_time: Timestamp when the trace started.
                If not provided, the current time will be used.
            raw_name: System level name.
            metadata: Additional contextual information about the trace.
            message: Message associated with the trace.
        """
        self.id: str = str(uuid.uuid4())
        self.name: str = name
        self.raw_name: Optional[str] = raw_name
        self.parent_id: Optional[str] = parent_id
        self.start_time: float = start_time if start_time is not None else time.time()
        self.end_time: Optional[float] = None
        self.children: List["Trace"] = []
        self.metadata: Dict[str, Any] = metadata or {}
        self.message: Optional[Message] = message

    def end(self, end_time: Optional[float] = None) -> None:
        """Mark the trace as complete with the given or current timestamp.

        Args:
            end_time: Timestamp to use as the end time.
                If not provided, the current time will be used.
        """
        self.end_time = end_time if end_time is not None else time.time()

    def add_child(self, child: "Trace") -> None:
        """Add a child trace to this trace.

        Args:
            child: The child trace to add.
        """
        self.children.append(child)

    def duration(self) -> Optional[float]:
        """Calculate the duration of this trace.

        Returns:
            The duration in seconds, or None if the trace hasn't ended yet.
        """
        return None if self.end_time is None else self.end_time - self.start_time

    def add_message(self, message: Message) -> None:
        """Add a message to the trace.

        Args:
            message: The message to add.
        """
        self.message = message

    def to_dict(self) -> Dict[str, Any]:
        """Convert the trace to a dictionary representation.

        Returns:
            A dictionary containing all trace information, suitable for serialization.
        """
        return {
            "id": self.id,
            "name": self.name,
            "raw_name": self.raw_name,
            "parent_id": self.parent_id,
            "start_time": self.start_time,
            "end_time": self.end_time,
            "duration": self.duration(),
            "children": [child.to_dict() for child in self.children],
            "metadata": self.metadata,
            "message": self.message,
        }

__init__(name, parent_id=None, start_time=None, raw_name=None, metadata=None, message=None)

Initialize a new trace.

Parameters:

Name Type Description Default
name str

Human-readable name of the operation being traced.

required
parent_id Optional[str]

ID of the parent trace, if this is a child operation.

None
start_time Optional[float]

Timestamp when the trace started. If not provided, the current time will be used.

None
raw_name Optional[str]

System level name.

None
metadata Optional[Dict[str, Any]]

Additional contextual information about the trace.

None
message Optional[Message]

Message associated with the trace.

None
Source code in strands/telemetry/metrics.py
def __init__(
    self,
    name: str,
    parent_id: Optional[str] = None,
    start_time: Optional[float] = None,
    raw_name: Optional[str] = None,
    metadata: Optional[Dict[str, Any]] = None,
    message: Optional[Message] = None,
) -> None:
    """Initialize a new trace.

    Args:
        name: Human-readable name of the operation being traced.
        parent_id: ID of the parent trace, if this is a child operation.
        start_time: Timestamp when the trace started.
            If not provided, the current time will be used.
        raw_name: System level name.
        metadata: Additional contextual information about the trace.
        message: Message associated with the trace.
    """
    self.id: str = str(uuid.uuid4())
    self.name: str = name
    self.raw_name: Optional[str] = raw_name
    self.parent_id: Optional[str] = parent_id
    self.start_time: float = start_time if start_time is not None else time.time()
    self.end_time: Optional[float] = None
    self.children: List["Trace"] = []
    self.metadata: Dict[str, Any] = metadata or {}
    self.message: Optional[Message] = message

add_child(child)

Add a child trace to this trace.

Parameters:

Name Type Description Default
child Trace

The child trace to add.

required
Source code in strands/telemetry/metrics.py
def add_child(self, child: "Trace") -> None:
    """Add a child trace to this trace.

    Args:
        child: The child trace to add.
    """
    self.children.append(child)

add_message(message)

Add a message to the trace.

Parameters:

Name Type Description Default
message Message

The message to add.

required
Source code in strands/telemetry/metrics.py
def add_message(self, message: Message) -> None:
    """Add a message to the trace.

    Args:
        message: The message to add.
    """
    self.message = message

duration()

Calculate the duration of this trace.

Returns:

Type Description
Optional[float]

The duration in seconds, or None if the trace hasn't ended yet.

Source code in strands/telemetry/metrics.py
def duration(self) -> Optional[float]:
    """Calculate the duration of this trace.

    Returns:
        The duration in seconds, or None if the trace hasn't ended yet.
    """
    return None if self.end_time is None else self.end_time - self.start_time

end(end_time=None)

Mark the trace as complete with the given or current timestamp.

Parameters:

Name Type Description Default
end_time Optional[float]

Timestamp to use as the end time. If not provided, the current time will be used.

None
Source code in strands/telemetry/metrics.py
def end(self, end_time: Optional[float] = None) -> None:
    """Mark the trace as complete with the given or current timestamp.

    Args:
        end_time: Timestamp to use as the end time.
            If not provided, the current time will be used.
    """
    self.end_time = end_time if end_time is not None else time.time()

to_dict()

Convert the trace to a dictionary representation.

Returns:

Type Description
Dict[str, Any]

A dictionary containing all trace information, suitable for serialization.

Source code in strands/telemetry/metrics.py
def to_dict(self) -> Dict[str, Any]:
    """Convert the trace to a dictionary representation.

    Returns:
        A dictionary containing all trace information, suitable for serialization.
    """
    return {
        "id": self.id,
        "name": self.name,
        "raw_name": self.raw_name,
        "parent_id": self.parent_id,
        "start_time": self.start_time,
        "end_time": self.end_time,
        "duration": self.duration(),
        "children": [child.to_dict() for child in self.children],
        "metadata": self.metadata,
        "message": self.message,
    }

metrics_to_string(event_loop_metrics, allowed_names=None)

Convert event loop metrics to a human-readable string representation.

Parameters:

Name Type Description Default
event_loop_metrics EventLoopMetrics

The metrics to format.

required
allowed_names Optional[Set[str]]

Set of names that are allowed to be displayed unmodified.

None

Returns:

Type Description
str

A formatted string representation of the metrics.

Source code in strands/telemetry/metrics.py
def metrics_to_string(event_loop_metrics: EventLoopMetrics, allowed_names: Optional[Set[str]] = None) -> str:
    """Convert event loop metrics to a human-readable string representation.

    Args:
        event_loop_metrics: The metrics to format.
        allowed_names: Set of names that are allowed to be displayed unmodified.

    Returns:
        A formatted string representation of the metrics.
    """
    return "\n".join(_metrics_summary_to_lines(event_loop_metrics, allowed_names or set()))