Skip to content

strands.experimental.steering.handlers.llm.llm_handler

LLM-based steering handler that uses an LLM to provide contextual guidance.

ToolSteeringAction = Annotated[Proceed | Guide | Interrupt, Field(discriminator='type')] module-attribute

Steering actions valid for tool steering (steer_before_tool).

  • Proceed: Allow tool execution to continue
  • Guide: Cancel tool and provide feedback for alternative approaches
  • Interrupt: Pause for human input before tool execution

logger = logging.getLogger(__name__) module-attribute

Agent

Core Agent implementation.

An agent orchestrates the following workflow:

  1. Receives user input
  2. Processes the input using a language model
  3. Decides whether to use tools to gather information or perform actions
  4. Executes those tools and receives results
  5. Continues reasoning with the new information
  6. Produces a final response
Source code in strands/agent/agent.py
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
class Agent:
    """Core Agent implementation.

    An agent orchestrates the following workflow:

    1. Receives user input
    2. Processes the input using a language model
    3. Decides whether to use tools to gather information or perform actions
    4. Executes those tools and receives results
    5. Continues reasoning with the new information
    6. Produces a final response
    """

    # For backwards compatibility
    ToolCaller = _ToolCaller

    def __init__(
        self,
        model: Model | str | None = None,
        messages: Messages | None = None,
        tools: list[Union[str, dict[str, str], "ToolProvider", Any]] | None = None,
        system_prompt: str | list[SystemContentBlock] | None = None,
        structured_output_model: type[BaseModel] | None = None,
        callback_handler: Callable[..., Any] | _DefaultCallbackHandlerSentinel | None = _DEFAULT_CALLBACK_HANDLER,
        conversation_manager: ConversationManager | None = None,
        record_direct_tool_call: bool = True,
        load_tools_from_directory: bool = False,
        trace_attributes: Mapping[str, AttributeValue] | None = None,
        *,
        agent_id: str | None = None,
        name: str | None = None,
        description: str | None = None,
        state: AgentState | dict | None = None,
        hooks: list[HookProvider] | None = None,
        session_manager: SessionManager | None = None,
        tool_executor: ToolExecutor | None = None,
        retry_strategy: ModelRetryStrategy | None = None,
    ):
        """Initialize the Agent with the specified configuration.

        Args:
            model: Provider for running inference or a string representing the model-id for Bedrock to use.
                Defaults to strands.models.BedrockModel if None.
            messages: List of initial messages to pre-load into the conversation.
                Defaults to an empty list if None.
            tools: List of tools to make available to the agent.
                Can be specified as:

                - String tool names (e.g., "retrieve")
                - File paths (e.g., "/path/to/tool.py")
                - Imported Python modules (e.g., from strands_tools import current_time)
                - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
                - ToolProvider instances for managed tool collections
                - Functions decorated with `@strands.tool` decorator.

                If provided, only these tools will be available. If None, all tools will be available.
            system_prompt: System prompt to guide model behavior.
                Can be a string or a list of SystemContentBlock objects for advanced features like caching.
                If None, the model will behave according to its default settings.
            structured_output_model: Pydantic model type(s) for structured output.
                When specified, all agent calls will attempt to return structured output of this type.
                This can be overridden on the agent invocation.
                Defaults to None (no structured output).
            callback_handler: Callback for processing events as they happen during agent execution.
                If not provided (using the default), a new PrintingCallbackHandler instance is created.
                If explicitly set to None, null_callback_handler is used.
            conversation_manager: Manager for conversation history and context window.
                Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
            record_direct_tool_call: Whether to record direct tool calls in message history.
                Defaults to True.
            load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
                Defaults to False.
            trace_attributes: Custom trace attributes to apply to the agent's trace span.
            agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
                Defaults to "default".
            name: name of the Agent
                Defaults to "Strands Agents".
            description: description of what the Agent does
                Defaults to None.
            state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
                Defaults to an empty AgentState object.
            hooks: hooks to be added to the agent hook registry
                Defaults to None.
            session_manager: Manager for handling agent sessions including conversation history and state.
                If provided, enables session-based persistence and state management.
            tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).
            retry_strategy: Strategy for retrying model calls on throttling or other transient errors.
                Defaults to ModelRetryStrategy with max_attempts=6, initial_delay=4s, max_delay=240s.
                Implement a custom HookProvider for custom retry logic, or pass None to disable retries.

        Raises:
            ValueError: If agent id contains path separators.
        """
        self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
        self.messages = messages if messages is not None else []
        # initializing self._system_prompt for backwards compatibility
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
        self._default_structured_output_model = structured_output_model
        self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
        self.name = name or _DEFAULT_AGENT_NAME
        self.description = description

        # If not provided, create a new PrintingCallbackHandler instance
        # If explicitly set to None, use null_callback_handler
        # Otherwise use the passed callback_handler
        self.callback_handler: Callable[..., Any] | PrintingCallbackHandler
        if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
            self.callback_handler = PrintingCallbackHandler()
        elif callback_handler is None:
            self.callback_handler = null_callback_handler
        else:
            self.callback_handler = callback_handler

        self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

        # Process trace attributes to ensure they're of compatible types
        self.trace_attributes: dict[str, AttributeValue] = {}
        if trace_attributes:
            for k, v in trace_attributes.items():
                if isinstance(v, (str, int, float, bool)) or (
                    isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
                ):
                    self.trace_attributes[k] = v

        self.record_direct_tool_call = record_direct_tool_call
        self.load_tools_from_directory = load_tools_from_directory

        self.tool_registry = ToolRegistry()

        # Process tool list if provided
        if tools is not None:
            self.tool_registry.process_tools(tools)

        # Initialize tools and configuration
        self.tool_registry.initialize_tools(self.load_tools_from_directory)
        if load_tools_from_directory:
            self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

        self.event_loop_metrics = EventLoopMetrics()

        # Initialize tracer instance (no-op if not configured)
        self.tracer = get_tracer()
        self.trace_span: trace_api.Span | None = None

        # Initialize agent state management
        if state is not None:
            if isinstance(state, dict):
                self.state = AgentState(state)
            elif isinstance(state, AgentState):
                self.state = state
            else:
                raise ValueError("state must be an AgentState object or a dict")
        else:
            self.state = AgentState()

        self.tool_caller = _ToolCaller(self)

        self.hooks = HookRegistry()

        self._interrupt_state = _InterruptState()

        # Initialize lock for guarding concurrent invocations
        # Using threading.Lock instead of asyncio.Lock because run_async() creates
        # separate event loops in different threads, so asyncio.Lock wouldn't work
        self._invocation_lock = threading.Lock()

        # In the future, we'll have a RetryStrategy base class but until
        # that API is determined we only allow ModelRetryStrategy
        if retry_strategy and type(retry_strategy) is not ModelRetryStrategy:
            raise ValueError("retry_strategy must be an instance of ModelRetryStrategy")

        self._retry_strategy = (
            retry_strategy
            if retry_strategy is not None
            else ModelRetryStrategy(max_attempts=MAX_ATTEMPTS, max_delay=MAX_DELAY, initial_delay=INITIAL_DELAY)
        )

        # Initialize session management functionality
        self._session_manager = session_manager
        if self._session_manager:
            self.hooks.add_hook(self._session_manager)

        # Allow conversation_managers to subscribe to hooks
        self.hooks.add_hook(self.conversation_manager)

        # Register retry strategy as a hook
        self.hooks.add_hook(self._retry_strategy)

        self.tool_executor = tool_executor or ConcurrentToolExecutor()

        if hooks:
            for hook in hooks:
                self.hooks.add_hook(hook)
        self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

    @property
    def system_prompt(self) -> str | None:
        """Get the system prompt as a string for backwards compatibility.

        Returns the system prompt as a concatenated string when it contains text content,
        or None if no text content is present. This maintains backwards compatibility
        with existing code that expects system_prompt to be a string.

        Returns:
            The system prompt as a string, or None if no text content exists.
        """
        return self._system_prompt

    @system_prompt.setter
    def system_prompt(self, value: str | list[SystemContentBlock] | None) -> None:
        """Set the system prompt and update internal content representation.

        Accepts either a string or list of SystemContentBlock objects.
        When set, both the backwards-compatible string representation and the internal
        content block representation are updated to maintain consistency.

        Args:
            value: System prompt as string, list of SystemContentBlock objects, or None.
                  - str: Simple text prompt (most common use case)
                  - list[SystemContentBlock]: Content blocks with features like caching
                  - None: Clear the system prompt
        """
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(value)

    @property
    def tool(self) -> _ToolCaller:
        """Call tool as a function.

        Returns:
            Tool caller through which user can invoke tool as a function.

        Example:
            ```
            agent = Agent(tools=[calculator])
            agent.tool.calculator(...)
            ```
        """
        return self.tool_caller

    @property
    def tool_names(self) -> list[str]:
        """Get a list of all registered tool names.

        Returns:
            Names of all tools available to this agent.
        """
        all_tools = self.tool_registry.get_all_tools_config()
        return list(all_tools.keys())

    def __call__(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: `agent("hello!")`
        - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
        - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
        - No input: `agent()` - uses existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
                - structured_output: Parsed structured output when structured_output_model was specified
        """
        return run_async(
            lambda: self.invoke_async(
                prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
            )
        )

    async def invoke_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result: object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
        """
        events = self.stream_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
        async for event in events:
            _ = event

        return cast(AgentResult, event["result"])

    def structured_output(self, output_model: type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history

        Raises:
            ValueError: If no conversation history or prompt is provided.
        """
        warnings.warn(
            "Agent.structured_output method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )

        return run_async(lambda: self.structured_output_async(output_model, prompt))

    async def structured_output_async(self, output_model: type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent (will not be added to conversation history).

        Raises:
            ValueError: If no conversation history or prompt is provided.
        -
        """
        if self._interrupt_state.activated:
            raise RuntimeError("cannot call structured output during interrupt")

        warnings.warn(
            "Agent.structured_output_async method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self, invocation_state={}))
        with self.tracer.tracer.start_as_current_span(
            "execute_structured_output", kind=trace_api.SpanKind.CLIENT
        ) as structured_output_span:
            try:
                if not self.messages and not prompt:
                    raise ValueError("No conversation history or prompt provided")

                temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

                structured_output_span.set_attributes(
                    {
                        "gen_ai.system": "strands-agents",
                        "gen_ai.agent.name": self.name,
                        "gen_ai.agent.id": self.agent_id,
                        "gen_ai.operation.name": "execute_structured_output",
                    }
                )
                if self.system_prompt:
                    structured_output_span.add_event(
                        "gen_ai.system.message",
                        attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                    )
                for message in temp_messages:
                    structured_output_span.add_event(
                        f"gen_ai.{message['role']}.message",
                        attributes={"role": message["role"], "content": serialize(message["content"])},
                    )
                events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
                async for event in events:
                    if isinstance(event, TypedEvent):
                        event.prepare(invocation_state={})
                        if event.is_callback_event:
                            self.callback_handler(**event.as_dict())

                structured_output_span.add_event(
                    "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
                )
                return event["output"]

            finally:
                await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self, invocation_state={}))

    def cleanup(self) -> None:
        """Clean up resources used by the agent.

        This method cleans up all tool providers that require explicit cleanup,
        such as MCP clients. It should be called when the agent is no longer needed
        to ensure proper resource cleanup.

        Note: This method uses a "belt and braces" approach with automatic cleanup
        through finalizers as a fallback, but explicit cleanup is recommended.
        """
        self.tool_registry.cleanup()

    def __del__(self) -> None:
        """Clean up resources when agent is garbage collected."""
        # __del__ is called even when an exception is thrown in the constructor,
        # so there is no guarantee tool_registry was set..
        if hasattr(self, "tool_registry"):
            self.tool_registry.cleanup()

    async def stream_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AsyncIterator[Any]:
        """Process a natural language prompt and yield events as an async iterator.

        This method provides an asynchronous interface for streaming agent events with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass to the event loop.[Deprecating]

        Yields:
            An async iterator that yields events. Each event is a dictionary containing
                information about the current state of processing, such as:

                - data: Text content being generated
                - complete: Whether this is the final chunk
                - current_tool_use: Information about tools being executed
                - And other event data provided by the callback handler

        Raises:
            ConcurrencyException: If another invocation is already in progress on this agent instance.
            Exception: Any exceptions from the agent invocation will be propagated to the caller.

        Example:
            ```python
            async for event in agent.stream_async("Analyze this data"):
                if "data" in event:
                    yield event["data"]
            ```
        """
        # Acquire lock to prevent concurrent invocations
        # Using threading.Lock instead of asyncio.Lock because run_async() creates
        # separate event loops in different threads
        acquired = self._invocation_lock.acquire(blocking=False)
        if not acquired:
            raise ConcurrencyException(
                "Agent is already processing a request. Concurrent invocations are not supported."
            )

        try:
            self._interrupt_state.resume(prompt)

            self.event_loop_metrics.reset_usage_metrics()

            merged_state = {}
            if kwargs:
                warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
                merged_state.update(kwargs)
                if invocation_state is not None:
                    merged_state["invocation_state"] = invocation_state
            else:
                if invocation_state is not None:
                    merged_state = invocation_state

            callback_handler = self.callback_handler
            if kwargs:
                callback_handler = kwargs.get("callback_handler", self.callback_handler)

            # Process input and get message to add (if any)
            messages = await self._convert_prompt_to_messages(prompt)

            self.trace_span = self._start_agent_trace_span(messages)

            with trace_api.use_span(self.trace_span):
                try:
                    events = self._run_loop(messages, merged_state, structured_output_model)

                    async for event in events:
                        event.prepare(invocation_state=merged_state)

                        if event.is_callback_event:
                            as_dict = event.as_dict()
                            callback_handler(**as_dict)
                            yield as_dict

                    result = AgentResult(*event["stop"])
                    callback_handler(result=result)
                    yield AgentResultEvent(result=result).as_dict()

                    self._end_agent_trace_span(response=result)

                except Exception as e:
                    self._end_agent_trace_span(error=e)
                    raise

        finally:
            self._invocation_lock.release()

    async def _run_loop(
        self,
        messages: Messages,
        invocation_state: dict[str, Any],
        structured_output_model: type[BaseModel] | None = None,
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the agent's event loop with the given message and parameters.

        Args:
            messages: The input messages to add to the conversation.
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_model: Optional Pydantic model type for structured output.

        Yields:
            Events from the event loop cycle.
        """
        before_invocation_event, _interrupts = await self.hooks.invoke_callbacks_async(
            BeforeInvocationEvent(agent=self, invocation_state=invocation_state, messages=messages)
        )
        messages = before_invocation_event.messages if before_invocation_event.messages is not None else messages

        agent_result: AgentResult | None = None
        try:
            yield InitEventLoopEvent()

            await self._append_messages(*messages)

            structured_output_context = StructuredOutputContext(
                structured_output_model or self._default_structured_output_model
            )

            # Execute the event loop cycle with retry logic for context limits
            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                # Signal from the model provider that the message sent by the user should be redacted,
                # likely due to a guardrail.
                if (
                    isinstance(event, ModelStreamChunkEvent)
                    and event.chunk
                    and event.chunk.get("redactContent")
                    and event.chunk["redactContent"].get("redactUserContentMessage")
                ):
                    self.messages[-1]["content"] = self._redact_user_content(
                        self.messages[-1]["content"], str(event.chunk["redactContent"]["redactUserContentMessage"])
                    )
                    if self._session_manager:
                        self._session_manager.redact_latest_message(self.messages[-1], self)
                yield event

            # Capture the result from the final event if available
            if isinstance(event, EventLoopStopEvent):
                agent_result = AgentResult(*event["stop"])

        finally:
            self.conversation_manager.apply_management(self)
            await self.hooks.invoke_callbacks_async(
                AfterInvocationEvent(agent=self, invocation_state=invocation_state, result=agent_result)
            )

    async def _execute_event_loop_cycle(
        self, invocation_state: dict[str, Any], structured_output_context: StructuredOutputContext | None = None
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the event loop cycle with retry logic for context window limits.

        This internal method handles the execution of the event loop cycle and implements
        retry logic for handling context window overflow exceptions by reducing the
        conversation context and retrying.

        Args:
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_context: Optional structured output context for this invocation.

        Yields:
            Events of the loop cycle.
        """
        # Add `Agent` to invocation_state to keep backwards-compatibility
        invocation_state["agent"] = self

        if structured_output_context:
            structured_output_context.register_tool(self.tool_registry)

        try:
            events = event_loop_cycle(
                agent=self,
                invocation_state=invocation_state,
                structured_output_context=structured_output_context,
            )
            async for event in events:
                yield event

        except ContextWindowOverflowException as e:
            # Try reducing the context size and retrying
            self.conversation_manager.reduce_context(self, e=e)

            # Sync agent after reduce_context to keep conversation_manager_state up to date in the session
            if self._session_manager:
                self._session_manager.sync_agent(self)

            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                yield event

        finally:
            if structured_output_context:
                structured_output_context.cleanup(self.tool_registry)

    async def _convert_prompt_to_messages(self, prompt: AgentInput) -> Messages:
        if self._interrupt_state.activated:
            return []

        messages: Messages | None = None
        if prompt is not None:
            # Check if the latest message is toolUse
            if len(self.messages) > 0 and any("toolUse" in content for content in self.messages[-1]["content"]):
                # Add toolResult message after to have a valid conversation
                logger.info(
                    "Agents latest message is toolUse, appending a toolResult message to have valid conversation."
                )
                tool_use_ids = [
                    content["toolUse"]["toolUseId"] for content in self.messages[-1]["content"] if "toolUse" in content
                ]
                await self._append_messages(
                    {
                        "role": "user",
                        "content": generate_missing_tool_result_content(tool_use_ids),
                    }
                )
            if isinstance(prompt, str):
                # String input - convert to user message
                messages = [{"role": "user", "content": [{"text": prompt}]}]
            elif isinstance(prompt, list):
                if len(prompt) == 0:
                    # Empty list
                    messages = []
                # Check if all item in input list are dictionaries
                elif all(isinstance(item, dict) for item in prompt):
                    # Check if all items are messages
                    if all(all(key in item for key in Message.__annotations__.keys()) for item in prompt):
                        # Messages input - add all messages to conversation
                        messages = cast(Messages, prompt)

                    # Check if all items are content blocks
                    elif all(any(key in ContentBlock.__annotations__.keys() for key in item) for item in prompt):
                        # Treat as List[ContentBlock] input - convert to user message
                        # This allows invalid structures to be passed through to the model
                        messages = [{"role": "user", "content": cast(list[ContentBlock], prompt)}]
        else:
            messages = []
        if messages is None:
            raise ValueError("Input prompt must be of type: `str | list[Contentblock] | Messages | None`.")
        return messages

    def _start_agent_trace_span(self, messages: Messages) -> trace_api.Span:
        """Starts a trace span for the agent.

        Args:
            messages: The input messages.
        """
        model_id = self.model.config.get("model_id") if hasattr(self.model, "config") else None
        return self.tracer.start_agent_span(
            messages=messages,
            agent_name=self.name,
            model_id=model_id,
            tools=self.tool_names,
            system_prompt=self.system_prompt,
            custom_trace_attributes=self.trace_attributes,
            tools_config=self.tool_registry.get_all_tools_config(),
        )

    def _end_agent_trace_span(
        self,
        response: AgentResult | None = None,
        error: Exception | None = None,
    ) -> None:
        """Ends a trace span for the agent.

        Args:
            span: The span to end.
            response: Response to record as a trace attribute.
            error: Error to record as a trace attribute.
        """
        if self.trace_span:
            trace_attributes: dict[str, Any] = {
                "span": self.trace_span,
            }

            if response:
                trace_attributes["response"] = response
            if error:
                trace_attributes["error"] = error

            self.tracer.end_agent_span(**trace_attributes)

    def _initialize_system_prompt(
        self, system_prompt: str | list[SystemContentBlock] | None
    ) -> tuple[str | None, list[SystemContentBlock] | None]:
        """Initialize system prompt fields from constructor input.

        Maintains backwards compatibility by keeping system_prompt as str when string input
        provided, avoiding breaking existing consumers.

        Maps system_prompt input to both string and content block representations:
        - If string: system_prompt=string, _system_prompt_content=[{text: string}]
        - If list with text elements: system_prompt=concatenated_text, _system_prompt_content=list
        - If list without text elements: system_prompt=None, _system_prompt_content=list
        - If None: system_prompt=None, _system_prompt_content=None
        """
        if isinstance(system_prompt, str):
            return system_prompt, [{"text": system_prompt}]
        elif isinstance(system_prompt, list):
            # Concatenate all text elements for backwards compatibility, None if no text found
            text_parts = [block["text"] for block in system_prompt if "text" in block]
            system_prompt_str = "\n".join(text_parts) if text_parts else None
            return system_prompt_str, system_prompt
        else:
            return None, None

    async def _append_messages(self, *messages: Message) -> None:
        """Appends messages to history and invoke the callbacks for the MessageAddedEvent."""
        for message in messages:
            self.messages.append(message)
            await self.hooks.invoke_callbacks_async(MessageAddedEvent(agent=self, message=message))

    def _redact_user_content(self, content: list[ContentBlock], redact_message: str) -> list[ContentBlock]:
        """Redact user content preserving toolResult blocks.

        Args:
            content: content blocks to be redacted
            redact_message: redact message to be replaced

        Returns:
            Redacted content, as follows:
            - if the message contains at least a toolResult block,
                all toolResult blocks(s) are kept, redacting only the result content;
            - otherwise, the entire content of the message is replaced
                with a single text block with the redact message.
        """
        redacted_content = []
        for block in content:
            if "toolResult" in block:
                block["toolResult"]["content"] = [{"text": redact_message}]
                redacted_content.append(block)

        if not redacted_content:
            # Text content is added only if no toolResult blocks were found
            redacted_content = [{"text": redact_message}]

        return redacted_content

system_prompt property writable

Get the system prompt as a string for backwards compatibility.

Returns the system prompt as a concatenated string when it contains text content, or None if no text content is present. This maintains backwards compatibility with existing code that expects system_prompt to be a string.

Returns:

Type Description
str | None

The system prompt as a string, or None if no text content exists.

tool property

Call tool as a function.

Returns:

Type Description
_ToolCaller

Tool caller through which user can invoke tool as a function.

Example
agent = Agent(tools=[calculator])
agent.tool.calculator(...)

tool_names property

Get a list of all registered tool names.

Returns:

Type Description
list[str]

Names of all tools available to this agent.

__call__(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: agent("hello!") - ContentBlock list: agent([{"text": "hello"}, {"image": {...}}]) - Message list: agent([{"role": "user", "content": [{"text": "hello"}]}]) - No input: agent() - uses existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Type Description
AgentResult

Result object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
  • structured_output: Parsed structured output when structured_output_model was specified
Source code in strands/agent/agent.py
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
def __call__(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: `agent("hello!")`
    - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
    - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
    - No input: `agent()` - uses existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
            - structured_output: Parsed structured output when structured_output_model was specified
    """
    return run_async(
        lambda: self.invoke_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
    )

__del__()

Clean up resources when agent is garbage collected.

Source code in strands/agent/agent.py
532
533
534
535
536
537
def __del__(self) -> None:
    """Clean up resources when agent is garbage collected."""
    # __del__ is called even when an exception is thrown in the constructor,
    # so there is no guarantee tool_registry was set..
    if hasattr(self, "tool_registry"):
        self.tool_registry.cleanup()

__init__(model=None, messages=None, tools=None, system_prompt=None, structured_output_model=None, callback_handler=_DEFAULT_CALLBACK_HANDLER, conversation_manager=None, record_direct_tool_call=True, load_tools_from_directory=False, trace_attributes=None, *, agent_id=None, name=None, description=None, state=None, hooks=None, session_manager=None, tool_executor=None, retry_strategy=None)

Initialize the Agent with the specified configuration.

Parameters:

Name Type Description Default
model Model | str | None

Provider for running inference or a string representing the model-id for Bedrock to use. Defaults to strands.models.BedrockModel if None.

None
messages Messages | None

List of initial messages to pre-load into the conversation. Defaults to an empty list if None.

None
tools list[Union[str, dict[str, str], ToolProvider, Any]] | None

List of tools to make available to the agent. Can be specified as:

  • String tool names (e.g., "retrieve")
  • File paths (e.g., "/path/to/tool.py")
  • Imported Python modules (e.g., from strands_tools import current_time)
  • Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
  • ToolProvider instances for managed tool collections
  • Functions decorated with @strands.tool decorator.

If provided, only these tools will be available. If None, all tools will be available.

None
system_prompt str | list[SystemContentBlock] | None

System prompt to guide model behavior. Can be a string or a list of SystemContentBlock objects for advanced features like caching. If None, the model will behave according to its default settings.

None
structured_output_model type[BaseModel] | None

Pydantic model type(s) for structured output. When specified, all agent calls will attempt to return structured output of this type. This can be overridden on the agent invocation. Defaults to None (no structured output).

None
callback_handler Callable[..., Any] | _DefaultCallbackHandlerSentinel | None

Callback for processing events as they happen during agent execution. If not provided (using the default), a new PrintingCallbackHandler instance is created. If explicitly set to None, null_callback_handler is used.

_DEFAULT_CALLBACK_HANDLER
conversation_manager ConversationManager | None

Manager for conversation history and context window. Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.

None
record_direct_tool_call bool

Whether to record direct tool calls in message history. Defaults to True.

True
load_tools_from_directory bool

Whether to load and automatically reload tools in the ./tools/ directory. Defaults to False.

False
trace_attributes Mapping[str, AttributeValue] | None

Custom trace attributes to apply to the agent's trace span.

None
agent_id str | None

Optional ID for the agent, useful for session management and multi-agent scenarios. Defaults to "default".

None
name str | None

name of the Agent Defaults to "Strands Agents".

None
description str | None

description of what the Agent does Defaults to None.

None
state AgentState | dict | None

stateful information for the agent. Can be either an AgentState object, or a json serializable dict. Defaults to an empty AgentState object.

None
hooks list[HookProvider] | None

hooks to be added to the agent hook registry Defaults to None.

None
session_manager SessionManager | None

Manager for handling agent sessions including conversation history and state. If provided, enables session-based persistence and state management.

None
tool_executor ToolExecutor | None

Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

None
retry_strategy ModelRetryStrategy | None

Strategy for retrying model calls on throttling or other transient errors. Defaults to ModelRetryStrategy with max_attempts=6, initial_delay=4s, max_delay=240s. Implement a custom HookProvider for custom retry logic, or pass None to disable retries.

None

Raises:

Type Description
ValueError

If agent id contains path separators.

Source code in strands/agent/agent.py
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
def __init__(
    self,
    model: Model | str | None = None,
    messages: Messages | None = None,
    tools: list[Union[str, dict[str, str], "ToolProvider", Any]] | None = None,
    system_prompt: str | list[SystemContentBlock] | None = None,
    structured_output_model: type[BaseModel] | None = None,
    callback_handler: Callable[..., Any] | _DefaultCallbackHandlerSentinel | None = _DEFAULT_CALLBACK_HANDLER,
    conversation_manager: ConversationManager | None = None,
    record_direct_tool_call: bool = True,
    load_tools_from_directory: bool = False,
    trace_attributes: Mapping[str, AttributeValue] | None = None,
    *,
    agent_id: str | None = None,
    name: str | None = None,
    description: str | None = None,
    state: AgentState | dict | None = None,
    hooks: list[HookProvider] | None = None,
    session_manager: SessionManager | None = None,
    tool_executor: ToolExecutor | None = None,
    retry_strategy: ModelRetryStrategy | None = None,
):
    """Initialize the Agent with the specified configuration.

    Args:
        model: Provider for running inference or a string representing the model-id for Bedrock to use.
            Defaults to strands.models.BedrockModel if None.
        messages: List of initial messages to pre-load into the conversation.
            Defaults to an empty list if None.
        tools: List of tools to make available to the agent.
            Can be specified as:

            - String tool names (e.g., "retrieve")
            - File paths (e.g., "/path/to/tool.py")
            - Imported Python modules (e.g., from strands_tools import current_time)
            - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
            - ToolProvider instances for managed tool collections
            - Functions decorated with `@strands.tool` decorator.

            If provided, only these tools will be available. If None, all tools will be available.
        system_prompt: System prompt to guide model behavior.
            Can be a string or a list of SystemContentBlock objects for advanced features like caching.
            If None, the model will behave according to its default settings.
        structured_output_model: Pydantic model type(s) for structured output.
            When specified, all agent calls will attempt to return structured output of this type.
            This can be overridden on the agent invocation.
            Defaults to None (no structured output).
        callback_handler: Callback for processing events as they happen during agent execution.
            If not provided (using the default), a new PrintingCallbackHandler instance is created.
            If explicitly set to None, null_callback_handler is used.
        conversation_manager: Manager for conversation history and context window.
            Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
        record_direct_tool_call: Whether to record direct tool calls in message history.
            Defaults to True.
        load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
            Defaults to False.
        trace_attributes: Custom trace attributes to apply to the agent's trace span.
        agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
            Defaults to "default".
        name: name of the Agent
            Defaults to "Strands Agents".
        description: description of what the Agent does
            Defaults to None.
        state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
            Defaults to an empty AgentState object.
        hooks: hooks to be added to the agent hook registry
            Defaults to None.
        session_manager: Manager for handling agent sessions including conversation history and state.
            If provided, enables session-based persistence and state management.
        tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).
        retry_strategy: Strategy for retrying model calls on throttling or other transient errors.
            Defaults to ModelRetryStrategy with max_attempts=6, initial_delay=4s, max_delay=240s.
            Implement a custom HookProvider for custom retry logic, or pass None to disable retries.

    Raises:
        ValueError: If agent id contains path separators.
    """
    self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
    self.messages = messages if messages is not None else []
    # initializing self._system_prompt for backwards compatibility
    self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
    self._default_structured_output_model = structured_output_model
    self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
    self.name = name or _DEFAULT_AGENT_NAME
    self.description = description

    # If not provided, create a new PrintingCallbackHandler instance
    # If explicitly set to None, use null_callback_handler
    # Otherwise use the passed callback_handler
    self.callback_handler: Callable[..., Any] | PrintingCallbackHandler
    if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
        self.callback_handler = PrintingCallbackHandler()
    elif callback_handler is None:
        self.callback_handler = null_callback_handler
    else:
        self.callback_handler = callback_handler

    self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

    # Process trace attributes to ensure they're of compatible types
    self.trace_attributes: dict[str, AttributeValue] = {}
    if trace_attributes:
        for k, v in trace_attributes.items():
            if isinstance(v, (str, int, float, bool)) or (
                isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
            ):
                self.trace_attributes[k] = v

    self.record_direct_tool_call = record_direct_tool_call
    self.load_tools_from_directory = load_tools_from_directory

    self.tool_registry = ToolRegistry()

    # Process tool list if provided
    if tools is not None:
        self.tool_registry.process_tools(tools)

    # Initialize tools and configuration
    self.tool_registry.initialize_tools(self.load_tools_from_directory)
    if load_tools_from_directory:
        self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

    self.event_loop_metrics = EventLoopMetrics()

    # Initialize tracer instance (no-op if not configured)
    self.tracer = get_tracer()
    self.trace_span: trace_api.Span | None = None

    # Initialize agent state management
    if state is not None:
        if isinstance(state, dict):
            self.state = AgentState(state)
        elif isinstance(state, AgentState):
            self.state = state
        else:
            raise ValueError("state must be an AgentState object or a dict")
    else:
        self.state = AgentState()

    self.tool_caller = _ToolCaller(self)

    self.hooks = HookRegistry()

    self._interrupt_state = _InterruptState()

    # Initialize lock for guarding concurrent invocations
    # Using threading.Lock instead of asyncio.Lock because run_async() creates
    # separate event loops in different threads, so asyncio.Lock wouldn't work
    self._invocation_lock = threading.Lock()

    # In the future, we'll have a RetryStrategy base class but until
    # that API is determined we only allow ModelRetryStrategy
    if retry_strategy and type(retry_strategy) is not ModelRetryStrategy:
        raise ValueError("retry_strategy must be an instance of ModelRetryStrategy")

    self._retry_strategy = (
        retry_strategy
        if retry_strategy is not None
        else ModelRetryStrategy(max_attempts=MAX_ATTEMPTS, max_delay=MAX_DELAY, initial_delay=INITIAL_DELAY)
    )

    # Initialize session management functionality
    self._session_manager = session_manager
    if self._session_manager:
        self.hooks.add_hook(self._session_manager)

    # Allow conversation_managers to subscribe to hooks
    self.hooks.add_hook(self.conversation_manager)

    # Register retry strategy as a hook
    self.hooks.add_hook(self._retry_strategy)

    self.tool_executor = tool_executor or ConcurrentToolExecutor()

    if hooks:
        for hook in hooks:
            self.hooks.add_hook(hook)
    self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

cleanup()

Clean up resources used by the agent.

This method cleans up all tool providers that require explicit cleanup, such as MCP clients. It should be called when the agent is no longer needed to ensure proper resource cleanup.

Note: This method uses a "belt and braces" approach with automatic cleanup through finalizers as a fallback, but explicit cleanup is recommended.

Source code in strands/agent/agent.py
520
521
522
523
524
525
526
527
528
529
530
def cleanup(self) -> None:
    """Clean up resources used by the agent.

    This method cleans up all tool providers that require explicit cleanup,
    such as MCP clients. It should be called when the agent is no longer needed
    to ensure proper resource cleanup.

    Note: This method uses a "belt and braces" approach with automatic cleanup
    through finalizers as a fallback, but explicit cleanup is recommended.
    """
    self.tool_registry.cleanup()

invoke_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Name Type Description
Result AgentResult

object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
Source code in strands/agent/agent.py
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
async def invoke_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result: object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
    """
    events = self.stream_async(
        prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
    )
    async for event in events:
        _ = event

    return cast(AgentResult, event["result"])

stream_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt and yield events as an async iterator.

This method provides an asynchronous interface for streaming agent events with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass to the event loop.[Deprecating]

{}

Yields:

Type Description
AsyncIterator[Any]

An async iterator that yields events. Each event is a dictionary containing information about the current state of processing, such as:

  • data: Text content being generated
  • complete: Whether this is the final chunk
  • current_tool_use: Information about tools being executed
  • And other event data provided by the callback handler

Raises:

Type Description
ConcurrencyException

If another invocation is already in progress on this agent instance.

Exception

Any exceptions from the agent invocation will be propagated to the caller.

Example
async for event in agent.stream_async("Analyze this data"):
    if "data" in event:
        yield event["data"]
Source code in strands/agent/agent.py
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
async def stream_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: type[BaseModel] | None = None,
    **kwargs: Any,
) -> AsyncIterator[Any]:
    """Process a natural language prompt and yield events as an async iterator.

    This method provides an asynchronous interface for streaming agent events with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass to the event loop.[Deprecating]

    Yields:
        An async iterator that yields events. Each event is a dictionary containing
            information about the current state of processing, such as:

            - data: Text content being generated
            - complete: Whether this is the final chunk
            - current_tool_use: Information about tools being executed
            - And other event data provided by the callback handler

    Raises:
        ConcurrencyException: If another invocation is already in progress on this agent instance.
        Exception: Any exceptions from the agent invocation will be propagated to the caller.

    Example:
        ```python
        async for event in agent.stream_async("Analyze this data"):
            if "data" in event:
                yield event["data"]
        ```
    """
    # Acquire lock to prevent concurrent invocations
    # Using threading.Lock instead of asyncio.Lock because run_async() creates
    # separate event loops in different threads
    acquired = self._invocation_lock.acquire(blocking=False)
    if not acquired:
        raise ConcurrencyException(
            "Agent is already processing a request. Concurrent invocations are not supported."
        )

    try:
        self._interrupt_state.resume(prompt)

        self.event_loop_metrics.reset_usage_metrics()

        merged_state = {}
        if kwargs:
            warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
            merged_state.update(kwargs)
            if invocation_state is not None:
                merged_state["invocation_state"] = invocation_state
        else:
            if invocation_state is not None:
                merged_state = invocation_state

        callback_handler = self.callback_handler
        if kwargs:
            callback_handler = kwargs.get("callback_handler", self.callback_handler)

        # Process input and get message to add (if any)
        messages = await self._convert_prompt_to_messages(prompt)

        self.trace_span = self._start_agent_trace_span(messages)

        with trace_api.use_span(self.trace_span):
            try:
                events = self._run_loop(messages, merged_state, structured_output_model)

                async for event in events:
                    event.prepare(invocation_state=merged_state)

                    if event.is_callback_event:
                        as_dict = event.as_dict()
                        callback_handler(**as_dict)
                        yield as_dict

                result = AgentResult(*event["stop"])
                callback_handler(result=result)
                yield AgentResultEvent(result=result).as_dict()

                self._end_agent_trace_span(response=result)

            except Exception as e:
                self._end_agent_trace_span(error=e)
                raise

    finally:
        self._invocation_lock.release()

structured_output(output_model, prompt=None)

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

Source code in strands/agent/agent.py
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
def structured_output(self, output_model: type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history

    Raises:
        ValueError: If no conversation history or prompt is provided.
    """
    warnings.warn(
        "Agent.structured_output method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )

    return run_async(lambda: self.structured_output_async(output_model, prompt))

structured_output_async(output_model, prompt=None) async

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent (will not be added to conversation history).

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

-

Source code in strands/agent/agent.py
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
async def structured_output_async(self, output_model: type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent (will not be added to conversation history).

    Raises:
        ValueError: If no conversation history or prompt is provided.
    -
    """
    if self._interrupt_state.activated:
        raise RuntimeError("cannot call structured output during interrupt")

    warnings.warn(
        "Agent.structured_output_async method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )
    await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self, invocation_state={}))
    with self.tracer.tracer.start_as_current_span(
        "execute_structured_output", kind=trace_api.SpanKind.CLIENT
    ) as structured_output_span:
        try:
            if not self.messages and not prompt:
                raise ValueError("No conversation history or prompt provided")

            temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

            structured_output_span.set_attributes(
                {
                    "gen_ai.system": "strands-agents",
                    "gen_ai.agent.name": self.name,
                    "gen_ai.agent.id": self.agent_id,
                    "gen_ai.operation.name": "execute_structured_output",
                }
            )
            if self.system_prompt:
                structured_output_span.add_event(
                    "gen_ai.system.message",
                    attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                )
            for message in temp_messages:
                structured_output_span.add_event(
                    f"gen_ai.{message['role']}.message",
                    attributes={"role": message["role"], "content": serialize(message["content"])},
                )
            events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
            async for event in events:
                if isinstance(event, TypedEvent):
                    event.prepare(invocation_state={})
                    if event.is_callback_event:
                        self.callback_handler(**event.as_dict())

            structured_output_span.add_event(
                "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
            )
            return event["output"]

        finally:
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self, invocation_state={}))

DefaultPromptMapper

Bases: LLMPromptMapper

Default prompt mapper for steering evaluation.

Source code in strands/experimental/steering/handlers/llm/mappers.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class DefaultPromptMapper(LLMPromptMapper):
    """Default prompt mapper for steering evaluation."""

    def create_steering_prompt(
        self, steering_context: SteeringContext, tool_use: ToolUse | None = None, **kwargs: Any
    ) -> str:
        """Create default steering prompt using Agent SOP structure.

        Uses Agent SOP format for structured, constraint-based prompts.
        See: https://github.com/strands-agents/agent-sop
        """
        context_str = (
            json.dumps(steering_context.data.get(), indent=2) if steering_context.data.get() else "No context available"
        )

        if tool_use:
            event_description = (
                f"Tool: {tool_use['name']}\nArguments: {json.dumps(tool_use.get('input', {}), indent=2)}"
            )
            action_type = "tool call"
        else:
            event_description = "General evaluation"
            action_type = "action"

        return _STEERING_PROMPT_TEMPLATE.format(
            action_type=action_type,
            action_type_title=action_type.title(),
            context_str=context_str,
            event_description=event_description,
        )

create_steering_prompt(steering_context, tool_use=None, **kwargs)

Create default steering prompt using Agent SOP structure.

Uses Agent SOP format for structured, constraint-based prompts. See: https://github.com/strands-agents/agent-sop

Source code in strands/experimental/steering/handlers/llm/mappers.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def create_steering_prompt(
    self, steering_context: SteeringContext, tool_use: ToolUse | None = None, **kwargs: Any
) -> str:
    """Create default steering prompt using Agent SOP structure.

    Uses Agent SOP format for structured, constraint-based prompts.
    See: https://github.com/strands-agents/agent-sop
    """
    context_str = (
        json.dumps(steering_context.data.get(), indent=2) if steering_context.data.get() else "No context available"
    )

    if tool_use:
        event_description = (
            f"Tool: {tool_use['name']}\nArguments: {json.dumps(tool_use.get('input', {}), indent=2)}"
        )
        action_type = "tool call"
    else:
        event_description = "General evaluation"
        action_type = "action"

    return _STEERING_PROMPT_TEMPLATE.format(
        action_type=action_type,
        action_type_title=action_type.title(),
        context_str=context_str,
        event_description=event_description,
    )

Guide

Bases: BaseModel

Provide contextual guidance to redirect the agent.

The agent receives the reason as contextual feedback to help guide its behavior. The specific handling depends on the steering context (e.g., tool call vs. model response).

Source code in strands/experimental/steering/core/action.py
38
39
40
41
42
43
44
45
46
47
class Guide(BaseModel):
    """Provide contextual guidance to redirect the agent.

    The agent receives the reason as contextual feedback to help guide
    its behavior. The specific handling depends on the steering context
    (e.g., tool call vs. model response).
    """

    type: Literal["guide"] = "guide"
    reason: str

Interrupt

Bases: BaseModel

Pause execution for human input via interrupt system.

Execution is paused and human input is requested through Strands' interrupt system. The human can approve or deny the operation, and their decision determines whether execution continues or is cancelled.

Source code in strands/experimental/steering/core/action.py
50
51
52
53
54
55
56
57
58
59
class Interrupt(BaseModel):
    """Pause execution for human input via interrupt system.

    Execution is paused and human input is requested through Strands'
    interrupt system. The human can approve or deny the operation, and their
    decision determines whether execution continues or is cancelled.
    """

    type: Literal["interrupt"] = "interrupt"
    reason: str

LLMPromptMapper

Bases: Protocol

Protocol for mapping context and events to LLM evaluation prompts.

Source code in strands/experimental/steering/handlers/llm/mappers.py
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
class LLMPromptMapper(Protocol):
    """Protocol for mapping context and events to LLM evaluation prompts."""

    def create_steering_prompt(
        self, steering_context: SteeringContext, tool_use: ToolUse | None = None, **kwargs: Any
    ) -> str:
        """Create steering prompt for LLM evaluation.

        Args:
            steering_context: Steering context with populated data
            tool_use: Tool use object for tool call events (None for other events)
            **kwargs: Additional event data for other steering events

        Returns:
            Formatted prompt string for LLM evaluation
        """
        ...

create_steering_prompt(steering_context, tool_use=None, **kwargs)

Create steering prompt for LLM evaluation.

Parameters:

Name Type Description Default
steering_context SteeringContext

Steering context with populated data

required
tool_use ToolUse | None

Tool use object for tool call events (None for other events)

None
**kwargs Any

Additional event data for other steering events

{}

Returns:

Type Description
str

Formatted prompt string for LLM evaluation

Source code in strands/experimental/steering/handlers/llm/mappers.py
71
72
73
74
75
76
77
78
79
80
81
82
83
84
def create_steering_prompt(
    self, steering_context: SteeringContext, tool_use: ToolUse | None = None, **kwargs: Any
) -> str:
    """Create steering prompt for LLM evaluation.

    Args:
        steering_context: Steering context with populated data
        tool_use: Tool use object for tool call events (None for other events)
        **kwargs: Additional event data for other steering events

    Returns:
        Formatted prompt string for LLM evaluation
    """
    ...

LLMSteeringHandler

Bases: SteeringHandler

Steering handler that uses an LLM to provide contextual guidance.

Uses natural language prompts to evaluate tool calls and provide contextual steering guidance to help agents navigate complex workflows.

Source code in strands/experimental/steering/handlers/llm/llm_handler.py
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class LLMSteeringHandler(SteeringHandler):
    """Steering handler that uses an LLM to provide contextual guidance.

    Uses natural language prompts to evaluate tool calls and provide
    contextual steering guidance to help agents navigate complex workflows.
    """

    def __init__(
        self,
        system_prompt: str,
        prompt_mapper: LLMPromptMapper | None = None,
        model: Model | None = None,
        context_providers: list[SteeringContextProvider] | None = None,
    ):
        """Initialize the LLMSteeringHandler.

        Args:
            system_prompt: System prompt defining steering guidance rules
            prompt_mapper: Custom prompt mapper for evaluation prompts
            model: Optional model override for steering evaluation
            context_providers: List of context providers for populating steering context.
                Defaults to [LedgerProvider()] if None. Pass an empty list to disable
                context providers.
        """
        providers: list[SteeringContextProvider] = (
            [LedgerProvider()] if context_providers is None else context_providers
        )
        super().__init__(context_providers=providers)
        self.system_prompt = system_prompt
        self.prompt_mapper = prompt_mapper or DefaultPromptMapper()
        self.model = model

    async def steer_before_tool(self, *, agent: Agent, tool_use: ToolUse, **kwargs: Any) -> ToolSteeringAction:
        """Provide contextual guidance for tool usage.

        Args:
            agent: The agent instance
            tool_use: The tool use object with name and arguments
            **kwargs: Additional keyword arguments for steering evaluation

        Returns:
            SteeringAction indicating how to guide the tool execution
        """
        # Generate steering prompt
        prompt = self.prompt_mapper.create_steering_prompt(self.steering_context, tool_use=tool_use)

        # Create isolated agent for steering evaluation (no shared conversation state)
        from .....agent import Agent

        steering_agent = Agent(system_prompt=self.system_prompt, model=self.model or agent.model, callback_handler=None)

        # Get LLM decision
        llm_result: _LLMSteering = cast(
            _LLMSteering, steering_agent(prompt, structured_output_model=_LLMSteering).structured_output
        )

        # Convert LLM decision to steering action
        match llm_result.decision:
            case "proceed":
                return Proceed(reason=llm_result.reason)
            case "guide":
                return Guide(reason=llm_result.reason)
            case "interrupt":
                return Interrupt(reason=llm_result.reason)
            case _:
                logger.warning("decision=<%s> | unknown llm decision, defaulting to proceed", llm_result.decision)  # type: ignore[unreachable]
                return Proceed(reason="Unknown LLM decision, defaulting to proceed")

__init__(system_prompt, prompt_mapper=None, model=None, context_providers=None)

Initialize the LLMSteeringHandler.

Parameters:

Name Type Description Default
system_prompt str

System prompt defining steering guidance rules

required
prompt_mapper LLMPromptMapper | None

Custom prompt mapper for evaluation prompts

None
model Model | None

Optional model override for steering evaluation

None
context_providers list[SteeringContextProvider] | None

List of context providers for populating steering context. Defaults to [LedgerProvider()] if None. Pass an empty list to disable context providers.

None
Source code in strands/experimental/steering/handlers/llm/llm_handler.py
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def __init__(
    self,
    system_prompt: str,
    prompt_mapper: LLMPromptMapper | None = None,
    model: Model | None = None,
    context_providers: list[SteeringContextProvider] | None = None,
):
    """Initialize the LLMSteeringHandler.

    Args:
        system_prompt: System prompt defining steering guidance rules
        prompt_mapper: Custom prompt mapper for evaluation prompts
        model: Optional model override for steering evaluation
        context_providers: List of context providers for populating steering context.
            Defaults to [LedgerProvider()] if None. Pass an empty list to disable
            context providers.
    """
    providers: list[SteeringContextProvider] = (
        [LedgerProvider()] if context_providers is None else context_providers
    )
    super().__init__(context_providers=providers)
    self.system_prompt = system_prompt
    self.prompt_mapper = prompt_mapper or DefaultPromptMapper()
    self.model = model

steer_before_tool(*, agent, tool_use, **kwargs) async

Provide contextual guidance for tool usage.

Parameters:

Name Type Description Default
agent Agent

The agent instance

required
tool_use ToolUse

The tool use object with name and arguments

required
**kwargs Any

Additional keyword arguments for steering evaluation

{}

Returns:

Type Description
ToolSteeringAction

SteeringAction indicating how to guide the tool execution

Source code in strands/experimental/steering/handlers/llm/llm_handler.py
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
async def steer_before_tool(self, *, agent: Agent, tool_use: ToolUse, **kwargs: Any) -> ToolSteeringAction:
    """Provide contextual guidance for tool usage.

    Args:
        agent: The agent instance
        tool_use: The tool use object with name and arguments
        **kwargs: Additional keyword arguments for steering evaluation

    Returns:
        SteeringAction indicating how to guide the tool execution
    """
    # Generate steering prompt
    prompt = self.prompt_mapper.create_steering_prompt(self.steering_context, tool_use=tool_use)

    # Create isolated agent for steering evaluation (no shared conversation state)
    from .....agent import Agent

    steering_agent = Agent(system_prompt=self.system_prompt, model=self.model or agent.model, callback_handler=None)

    # Get LLM decision
    llm_result: _LLMSteering = cast(
        _LLMSteering, steering_agent(prompt, structured_output_model=_LLMSteering).structured_output
    )

    # Convert LLM decision to steering action
    match llm_result.decision:
        case "proceed":
            return Proceed(reason=llm_result.reason)
        case "guide":
            return Guide(reason=llm_result.reason)
        case "interrupt":
            return Interrupt(reason=llm_result.reason)
        case _:
            logger.warning("decision=<%s> | unknown llm decision, defaulting to proceed", llm_result.decision)  # type: ignore[unreachable]
            return Proceed(reason="Unknown LLM decision, defaulting to proceed")

LedgerProvider

Bases: SteeringContextProvider

Combined ledger context provider for both before and after tool calls.

Source code in strands/experimental/steering/context_providers/ledger_provider.py
77
78
79
80
81
82
83
84
85
class LedgerProvider(SteeringContextProvider):
    """Combined ledger context provider for both before and after tool calls."""

    def context_providers(self, **kwargs: Any) -> list[SteeringContextCallback]:
        """Return ledger context providers with shared state."""
        return [
            LedgerBeforeToolCall(),
            LedgerAfterToolCall(),
        ]

context_providers(**kwargs)

Return ledger context providers with shared state.

Source code in strands/experimental/steering/context_providers/ledger_provider.py
80
81
82
83
84
85
def context_providers(self, **kwargs: Any) -> list[SteeringContextCallback]:
    """Return ledger context providers with shared state."""
    return [
        LedgerBeforeToolCall(),
        LedgerAfterToolCall(),
    ]

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: type[T], prompt: Messages, system_prompt: str | None = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, T | Any], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: list[ToolSpec] | None = None,
        system_prompt: str | None = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        invocation_state: dict[str, Any] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            invocation_state: Caller-provided state/context that was passed to the agent when it was invoked.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
49
50
51
52
53
54
55
56
57
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, invocation_state=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs list[ToolSpec] | None

List of tool specifications to make available to the model.

None
system_prompt str | None

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
invocation_state dict[str, Any] | None

Caller-provided state/context that was passed to the agent when it was invoked.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: list[ToolSpec] | None = None,
    system_prompt: str | None = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    invocation_state: dict[str, Any] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        invocation_state: Caller-provided state/context that was passed to the agent when it was invoked.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt str | None

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, T | Any], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: type[T], prompt: Messages, system_prompt: str | None = None, **kwargs: Any
) -> AsyncGenerator[dict[str, T | Any], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
39
40
41
42
43
44
45
46
47
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

Proceed

Bases: BaseModel

Allow execution to continue without intervention.

The action proceeds as planned. The reason provides context for logging and debugging purposes.

Source code in strands/experimental/steering/core/action.py
27
28
29
30
31
32
33
34
35
class Proceed(BaseModel):
    """Allow execution to continue without intervention.

    The action proceeds as planned. The reason provides context
    for logging and debugging purposes.
    """

    type: Literal["proceed"] = "proceed"
    reason: str

SteeringContextProvider

Bases: ABC

Abstract base class for context providers that handle multiple event types.

Source code in strands/experimental/steering/core/context.py
71
72
73
74
75
76
77
class SteeringContextProvider(ABC):
    """Abstract base class for context providers that handle multiple event types."""

    @abstractmethod
    def context_providers(self, **kwargs: Any) -> list[SteeringContextCallback]:
        """Return list of context callbacks with event types extracted from generics."""
        ...

context_providers(**kwargs) abstractmethod

Return list of context callbacks with event types extracted from generics.

Source code in strands/experimental/steering/core/context.py
74
75
76
77
@abstractmethod
def context_providers(self, **kwargs: Any) -> list[SteeringContextCallback]:
    """Return list of context callbacks with event types extracted from generics."""
    ...

SteeringHandler

Bases: HookProvider, ABC

Base class for steering handlers that provide contextual guidance to agents.

Steering handlers maintain local context and register hook callbacks to populate context data as needed for guidance decisions.

Source code in strands/experimental/steering/core/handler.py
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
class SteeringHandler(HookProvider, ABC):
    """Base class for steering handlers that provide contextual guidance to agents.

    Steering handlers maintain local context and register hook callbacks
    to populate context data as needed for guidance decisions.
    """

    def __init__(self, context_providers: list[SteeringContextProvider] | None = None):
        """Initialize the steering handler.

        Args:
            context_providers: List of context providers for context updates
        """
        super().__init__()
        self.steering_context = SteeringContext()
        self._context_callbacks = []

        # Collect callbacks from all providers
        for provider in context_providers or []:
            self._context_callbacks.extend(provider.context_providers())

        logger.debug("handler_class=<%s> | initialized", self.__class__.__name__)

    def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None:
        """Register hooks for steering guidance and context updates."""
        # Register context update callbacks
        for callback in self._context_callbacks:
            registry.add_callback(
                callback.event_type, lambda event, callback=callback: callback(event, self.steering_context)
            )

        # Register tool steering guidance
        registry.add_callback(BeforeToolCallEvent, self._provide_tool_steering_guidance)

        # Register model steering guidance
        registry.add_callback(AfterModelCallEvent, self._provide_model_steering_guidance)

    async def _provide_tool_steering_guidance(self, event: BeforeToolCallEvent) -> None:
        """Provide steering guidance for tool call."""
        tool_name = event.tool_use["name"]
        logger.debug("tool_name=<%s> | providing tool steering guidance", tool_name)

        try:
            action = await self.steer_before_tool(agent=event.agent, tool_use=event.tool_use)
        except Exception as e:
            logger.debug("tool_name=<%s>, error=<%s> | tool steering handler guidance failed", tool_name, e)
            return

        self._handle_tool_steering_action(action, event, tool_name)

    def _handle_tool_steering_action(
        self, action: ToolSteeringAction, event: BeforeToolCallEvent, tool_name: str
    ) -> None:
        """Handle the steering action for tool calls by modifying tool execution flow.

        Proceed: Tool executes normally
        Guide: Tool cancelled with contextual feedback for agent to consider alternatives
        Interrupt: Tool execution paused for human input via interrupt system
        """
        if isinstance(action, Proceed):
            logger.debug("tool_name=<%s> | tool call proceeding", tool_name)
        elif isinstance(action, Guide):
            logger.debug("tool_name=<%s> | tool call guided: %s", tool_name, action.reason)
            event.cancel_tool = f"Tool call cancelled. {action.reason} You MUST follow this guidance immediately."
        elif isinstance(action, Interrupt):
            logger.debug("tool_name=<%s> | tool call requires human input: %s", tool_name, action.reason)
            can_proceed: bool = event.interrupt(name=f"steering_input_{tool_name}", reason={"message": action.reason})
            logger.debug("tool_name=<%s> | received human input for tool call", tool_name)

            if not can_proceed:
                event.cancel_tool = f"Manual approval denied: {action.reason}"
                logger.debug("tool_name=<%s> | tool call denied by manual approval", tool_name)
            else:
                logger.debug("tool_name=<%s> | tool call approved manually", tool_name)
        else:
            raise ValueError(f"Unknown steering action type for tool call: {action}")

    async def _provide_model_steering_guidance(self, event: AfterModelCallEvent) -> None:
        """Provide steering guidance for model response."""
        logger.debug("providing model steering guidance")

        # Only steer on successful model responses
        if event.stop_response is None:
            logger.debug("no stop response available | skipping model steering")
            return

        try:
            action = await self.steer_after_model(
                agent=event.agent, message=event.stop_response.message, stop_reason=event.stop_response.stop_reason
            )
        except Exception as e:
            logger.debug("error=<%s> | model steering handler guidance failed", e)
            return

        await self._handle_model_steering_action(action, event)

    async def _handle_model_steering_action(self, action: ModelSteeringAction, event: AfterModelCallEvent) -> None:
        """Handle the steering action for model responses by modifying response handling flow.

        Proceed: Model response accepted without modification
        Guide: Discard model response and retry with guidance message added to conversation
        """
        if isinstance(action, Proceed):
            logger.debug("model response proceeding")
        elif isinstance(action, Guide):
            logger.debug("model response guided (retrying): %s", action.reason)
            # Set retry flag to discard current response
            event.retry = True
            # Add guidance message to agent's conversation so model sees it on retry
            await event.agent._append_messages({"role": "user", "content": [{"text": action.reason}]})
            logger.debug("added guidance message to conversation for model retry")
        else:
            raise ValueError(f"Unknown steering action type for model response: {action}")

    async def steer_before_tool(self, *, agent: "Agent", tool_use: ToolUse, **kwargs: Any) -> ToolSteeringAction:
        """Provide contextual guidance before tool execution.

        This method is called before a tool is executed, allowing the handler to:
        - Proceed: Allow tool execution to continue
        - Guide: Cancel tool and provide feedback for alternative approaches
        - Interrupt: Pause for human input before tool execution

        Args:
            agent: The agent instance
            tool_use: The tool use object with name and arguments
            **kwargs: Additional keyword arguments for guidance evaluation

        Returns:
            ToolSteeringAction indicating how to guide the tool execution

        Note:
            Access steering context via self.steering_context
            Default implementation returns Proceed (allow tool execution)
            Override this method to implement custom tool steering logic
        """
        return Proceed(reason="Default implementation: allowing tool execution")

    async def steer_after_model(
        self, *, agent: "Agent", message: Message, stop_reason: StopReason, **kwargs: Any
    ) -> ModelSteeringAction:
        """Provide contextual guidance after model response.

        This method is called after the model generates a response, allowing the handler to:
        - Proceed: Accept the model response without modification
        - Guide: Discard the response and retry (message is dropped, model is called again)

        Note: Interrupt is not supported for model steering as the model has already responded.

        Args:
            agent: The agent instance
            message: The model's generated message
            stop_reason: The reason the model stopped generating
            **kwargs: Additional keyword arguments for guidance evaluation

        Returns:
            ModelSteeringAction indicating how to handle the model response

        Note:
            Access steering context via self.steering_context
            Default implementation returns Proceed (accept response as-is)
            Override this method to implement custom model steering logic
        """
        return Proceed(reason="Default implementation: accepting model response")

__init__(context_providers=None)

Initialize the steering handler.

Parameters:

Name Type Description Default
context_providers list[SteeringContextProvider] | None

List of context providers for context updates

None
Source code in strands/experimental/steering/core/handler.py
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
def __init__(self, context_providers: list[SteeringContextProvider] | None = None):
    """Initialize the steering handler.

    Args:
        context_providers: List of context providers for context updates
    """
    super().__init__()
    self.steering_context = SteeringContext()
    self._context_callbacks = []

    # Collect callbacks from all providers
    for provider in context_providers or []:
        self._context_callbacks.extend(provider.context_providers())

    logger.debug("handler_class=<%s> | initialized", self.__class__.__name__)

register_hooks(registry, **kwargs)

Register hooks for steering guidance and context updates.

Source code in strands/experimental/steering/core/handler.py
78
79
80
81
82
83
84
85
86
87
88
89
90
def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None:
    """Register hooks for steering guidance and context updates."""
    # Register context update callbacks
    for callback in self._context_callbacks:
        registry.add_callback(
            callback.event_type, lambda event, callback=callback: callback(event, self.steering_context)
        )

    # Register tool steering guidance
    registry.add_callback(BeforeToolCallEvent, self._provide_tool_steering_guidance)

    # Register model steering guidance
    registry.add_callback(AfterModelCallEvent, self._provide_model_steering_guidance)

steer_after_model(*, agent, message, stop_reason, **kwargs) async

Provide contextual guidance after model response.

This method is called after the model generates a response, allowing the handler to: - Proceed: Accept the model response without modification - Guide: Discard the response and retry (message is dropped, model is called again)

Note: Interrupt is not supported for model steering as the model has already responded.

Parameters:

Name Type Description Default
agent Agent

The agent instance

required
message Message

The model's generated message

required
stop_reason StopReason

The reason the model stopped generating

required
**kwargs Any

Additional keyword arguments for guidance evaluation

{}

Returns:

Type Description
ModelSteeringAction

ModelSteeringAction indicating how to handle the model response

Note

Access steering context via self.steering_context Default implementation returns Proceed (accept response as-is) Override this method to implement custom model steering logic

Source code in strands/experimental/steering/core/handler.py
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
async def steer_after_model(
    self, *, agent: "Agent", message: Message, stop_reason: StopReason, **kwargs: Any
) -> ModelSteeringAction:
    """Provide contextual guidance after model response.

    This method is called after the model generates a response, allowing the handler to:
    - Proceed: Accept the model response without modification
    - Guide: Discard the response and retry (message is dropped, model is called again)

    Note: Interrupt is not supported for model steering as the model has already responded.

    Args:
        agent: The agent instance
        message: The model's generated message
        stop_reason: The reason the model stopped generating
        **kwargs: Additional keyword arguments for guidance evaluation

    Returns:
        ModelSteeringAction indicating how to handle the model response

    Note:
        Access steering context via self.steering_context
        Default implementation returns Proceed (accept response as-is)
        Override this method to implement custom model steering logic
    """
    return Proceed(reason="Default implementation: accepting model response")

steer_before_tool(*, agent, tool_use, **kwargs) async

Provide contextual guidance before tool execution.

This method is called before a tool is executed, allowing the handler to: - Proceed: Allow tool execution to continue - Guide: Cancel tool and provide feedback for alternative approaches - Interrupt: Pause for human input before tool execution

Parameters:

Name Type Description Default
agent Agent

The agent instance

required
tool_use ToolUse

The tool use object with name and arguments

required
**kwargs Any

Additional keyword arguments for guidance evaluation

{}

Returns:

Type Description
ToolSteeringAction

ToolSteeringAction indicating how to guide the tool execution

Note

Access steering context via self.steering_context Default implementation returns Proceed (allow tool execution) Override this method to implement custom tool steering logic

Source code in strands/experimental/steering/core/handler.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
async def steer_before_tool(self, *, agent: "Agent", tool_use: ToolUse, **kwargs: Any) -> ToolSteeringAction:
    """Provide contextual guidance before tool execution.

    This method is called before a tool is executed, allowing the handler to:
    - Proceed: Allow tool execution to continue
    - Guide: Cancel tool and provide feedback for alternative approaches
    - Interrupt: Pause for human input before tool execution

    Args:
        agent: The agent instance
        tool_use: The tool use object with name and arguments
        **kwargs: Additional keyword arguments for guidance evaluation

    Returns:
        ToolSteeringAction indicating how to guide the tool execution

    Note:
        Access steering context via self.steering_context
        Default implementation returns Proceed (allow tool execution)
        Override this method to implement custom tool steering logic
    """
    return Proceed(reason="Default implementation: allowing tool execution")

ToolUse

Bases: TypedDict

A request from the model to use a specific tool with the provided input.

Attributes:

Name Type Description
input Any

The input parameters for the tool. Can be any JSON-serializable type.

name str

The name of the tool to invoke.

toolUseId str

A unique identifier for this specific tool use request.

Source code in strands/types/tools.py
53
54
55
56
57
58
59
60
61
62
63
64
65
class ToolUse(TypedDict):
    """A request from the model to use a specific tool with the provided input.

    Attributes:
        input: The input parameters for the tool.
            Can be any JSON-serializable type.
        name: The name of the tool to invoke.
        toolUseId: A unique identifier for this specific tool use request.
    """

    input: Any
    name: str
    toolUseId: str

_LLMSteering

Bases: BaseModel

Structured output model for LLM steering decisions.

Source code in strands/experimental/steering/handlers/llm/llm_handler.py
24
25
26
27
28
29
30
class _LLMSteering(BaseModel):
    """Structured output model for LLM steering decisions."""

    decision: Literal["proceed", "guide", "interrupt"] = Field(
        description="Steering decision: 'proceed' to continue, 'guide' to provide feedback, 'interrupt' for human input"
    )
    reason: str = Field(description="Clear explanation of the steering decision and any guidance provided")