Skip to content

strands.models.bedrock

AWS Bedrock model provider.

  • Docs: https://aws.amazon.com/bedrock/

BEDROCK_CONTEXT_WINDOW_OVERFLOW_MESSAGES = ['Input is too long for requested model', 'input length and `max_tokens` exceed context limit', 'too many total text bytes'] module-attribute

DEFAULT_BEDROCK_MODEL_ID = 'us.anthropic.claude-sonnet-4-20250514-v1:0' module-attribute

DEFAULT_BEDROCK_REGION = 'us-west-2' module-attribute

DEFAULT_READ_TIMEOUT = 120 module-attribute

Messages = list[Message] module-attribute

A list of messages representing a conversation.

T = TypeVar('T', bound=BaseModel) module-attribute

ToolChoice = ToolChoiceAutoDict | ToolChoiceAnyDict | ToolChoiceToolDict module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

_DEFAULT_BEDROCK_MODEL_ID = '{}.anthropic.claude-sonnet-4-20250514-v1:0' module-attribute

_MODELS_INCLUDE_STATUS = ['anthropic.claude'] module-attribute

logger = logging.getLogger(__name__) module-attribute

BedrockModel

Bases: Model

AWS Bedrock model provider implementation.

The implementation handles Bedrock-specific features such as:

  • Tool configuration for function calling
  • Guardrails integration
  • Caching points for system prompts and tools
  • Streaming responses
  • Context window overflow detection
Source code in strands/models/bedrock.py
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
class BedrockModel(Model):
    """AWS Bedrock model provider implementation.

    The implementation handles Bedrock-specific features such as:

    - Tool configuration for function calling
    - Guardrails integration
    - Caching points for system prompts and tools
    - Streaming responses
    - Context window overflow detection
    """

    class BedrockConfig(TypedDict, total=False):
        """Configuration options for Bedrock models.

        Attributes:
            additional_args: Any additional arguments to include in the request
            additional_request_fields: Additional fields to include in the Bedrock request
            additional_response_field_paths: Additional response field paths to extract
            cache_prompt: Cache point type for the system prompt (deprecated, use cache_config)
            cache_config: Configuration for prompt caching. Use CacheConfig(strategy="auto") for automatic caching.
            cache_tools: Cache point type for tools
            guardrail_id: ID of the guardrail to apply
            guardrail_trace: Guardrail trace mode. Defaults to enabled.
            guardrail_version: Version of the guardrail to apply
            guardrail_stream_processing_mode: The guardrail processing mode
            guardrail_redact_input: Flag to redact input if a guardrail is triggered. Defaults to True.
            guardrail_redact_input_message: If a Bedrock Input guardrail triggers, replace the input with this message.
            guardrail_redact_output: Flag to redact output if guardrail is triggered. Defaults to False.
            guardrail_redact_output_message: If a Bedrock Output guardrail triggers, replace output with this message.
            guardrail_latest_message: Flag to send only the lastest user message to guardrails.
                Defaults to False.
            max_tokens: Maximum number of tokens to generate in the response
            model_id: The Bedrock model ID (e.g., "us.anthropic.claude-sonnet-4-20250514-v1:0")
            include_tool_result_status: Flag to include status field in tool results.
                True includes status, False removes status, "auto" determines based on model_id. Defaults to "auto".
            stop_sequences: List of sequences that will stop generation when encountered
            streaming: Flag to enable/disable streaming. Defaults to True.
            temperature: Controls randomness in generation (higher = more random)
            top_p: Controls diversity via nucleus sampling (alternative to temperature)
        """

        additional_args: dict[str, Any] | None
        additional_request_fields: dict[str, Any] | None
        additional_response_field_paths: list[str] | None
        cache_prompt: str | None
        cache_config: CacheConfig | None
        cache_tools: str | None
        guardrail_id: str | None
        guardrail_trace: Literal["enabled", "disabled", "enabled_full"] | None
        guardrail_stream_processing_mode: Literal["sync", "async"] | None
        guardrail_version: str | None
        guardrail_redact_input: bool | None
        guardrail_redact_input_message: str | None
        guardrail_redact_output: bool | None
        guardrail_redact_output_message: str | None
        guardrail_latest_message: bool | None
        max_tokens: int | None
        model_id: str
        include_tool_result_status: Literal["auto"] | bool | None
        stop_sequences: list[str] | None
        streaming: bool | None
        temperature: float | None
        top_p: float | None

    def __init__(
        self,
        *,
        boto_session: boto3.Session | None = None,
        boto_client_config: BotocoreConfig | None = None,
        region_name: str | None = None,
        endpoint_url: str | None = None,
        **model_config: Unpack[BedrockConfig],
    ):
        """Initialize provider instance.

        Args:
            boto_session: Boto Session to use when calling the Bedrock Model.
            boto_client_config: Configuration to use when creating the Bedrock-Runtime Boto Client.
            region_name: AWS region to use for the Bedrock service.
                Defaults to the AWS_REGION environment variable if set, or "us-west-2" if not set.
            endpoint_url: Custom endpoint URL for VPC endpoints (PrivateLink)
            **model_config: Configuration options for the Bedrock model.
        """
        if region_name and boto_session:
            raise ValueError("Cannot specify both `region_name` and `boto_session`.")

        session = boto_session or boto3.Session()
        resolved_region = region_name or session.region_name or os.environ.get("AWS_REGION") or DEFAULT_BEDROCK_REGION
        self.config = BedrockModel.BedrockConfig(
            model_id=BedrockModel._get_default_model_with_warning(resolved_region, model_config),
            include_tool_result_status="auto",
        )
        self.update_config(**model_config)

        logger.debug("config=<%s> | initializing", self.config)

        # Add strands-agents to the request user agent
        if boto_client_config:
            existing_user_agent = getattr(boto_client_config, "user_agent_extra", None)

            # Append 'strands-agents' to existing user_agent_extra or set it if not present
            if existing_user_agent:
                new_user_agent = f"{existing_user_agent} strands-agents"
            else:
                new_user_agent = "strands-agents"

            client_config = boto_client_config.merge(BotocoreConfig(user_agent_extra=new_user_agent))
        else:
            client_config = BotocoreConfig(user_agent_extra="strands-agents", read_timeout=DEFAULT_READ_TIMEOUT)

        self.client = session.client(
            service_name="bedrock-runtime",
            config=client_config,
            endpoint_url=endpoint_url,
            region_name=resolved_region,
        )

        logger.debug("region=<%s> | bedrock client created", self.client.meta.region_name)

    @property
    def _supports_caching(self) -> bool:
        """Whether this model supports prompt caching.

        Returns True for Claude models on Bedrock.
        """
        model_id = self.config.get("model_id", "").lower()
        return "claude" in model_id or "anthropic" in model_id

    @override
    def update_config(self, **model_config: Unpack[BedrockConfig]) -> None:  # type: ignore
        """Update the Bedrock Model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        validate_config_keys(model_config, self.BedrockConfig)
        self.config.update(model_config)

    @override
    def get_config(self) -> BedrockConfig:
        """Get the current Bedrock Model configuration.

        Returns:
            The Bedrock model configuration.
        """
        return self.config

    def _format_request(
        self,
        messages: Messages,
        tool_specs: list[ToolSpec] | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        tool_choice: ToolChoice | None = None,
    ) -> dict[str, Any]:
        """Format a Bedrock converse stream request.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks to provide context to the model.

        Returns:
            A Bedrock converse stream request.
        """
        if not tool_specs:
            has_tool_content = any(
                any("toolUse" in block or "toolResult" in block for block in msg.get("content", [])) for msg in messages
            )
            if has_tool_content:
                tool_specs = [noop_tool.tool_spec]

        # Use system_prompt_content directly (copy for mutability)
        system_blocks: list[SystemContentBlock] = system_prompt_content.copy() if system_prompt_content else []
        # Add cache point if configured (backwards compatibility)
        if cache_prompt := self.config.get("cache_prompt"):
            warnings.warn(
                "cache_prompt is deprecated. Use SystemContentBlock with cachePoint instead.", UserWarning, stacklevel=3
            )
            system_blocks.append({"cachePoint": {"type": cache_prompt}})

        return {
            "modelId": self.config["model_id"],
            "messages": self._format_bedrock_messages(messages),
            "system": system_blocks,
            **(
                {
                    "toolConfig": {
                        "tools": [
                            *[
                                {
                                    "toolSpec": {
                                        "name": tool_spec["name"],
                                        "description": tool_spec["description"],
                                        "inputSchema": tool_spec["inputSchema"],
                                    }
                                }
                                for tool_spec in tool_specs
                            ],
                            *(
                                [{"cachePoint": {"type": self.config["cache_tools"]}}]
                                if self.config.get("cache_tools")
                                else []
                            ),
                        ],
                        **({"toolChoice": tool_choice if tool_choice else {"auto": {}}}),
                    }
                }
                if tool_specs
                else {}
            ),
            **(self._get_additional_request_fields(tool_choice)),
            **(
                {"additionalModelResponseFieldPaths": self.config["additional_response_field_paths"]}
                if self.config.get("additional_response_field_paths")
                else {}
            ),
            **(
                {
                    "guardrailConfig": {
                        "guardrailIdentifier": self.config["guardrail_id"],
                        "guardrailVersion": self.config["guardrail_version"],
                        "trace": self.config.get("guardrail_trace", "enabled"),
                        **(
                            {"streamProcessingMode": self.config.get("guardrail_stream_processing_mode")}
                            if self.config.get("guardrail_stream_processing_mode")
                            else {}
                        ),
                    }
                }
                if self.config.get("guardrail_id") and self.config.get("guardrail_version")
                else {}
            ),
            "inferenceConfig": {
                key: value
                for key, value in [
                    ("maxTokens", self.config.get("max_tokens")),
                    ("temperature", self.config.get("temperature")),
                    ("topP", self.config.get("top_p")),
                    ("stopSequences", self.config.get("stop_sequences")),
                ]
                if value is not None
            },
            **(
                self.config["additional_args"]
                if "additional_args" in self.config and self.config["additional_args"] is not None
                else {}
            ),
        }

    def _get_additional_request_fields(self, tool_choice: ToolChoice | None) -> dict[str, Any]:
        """Get additional request fields, removing thinking if tool_choice forces tool use.

        Bedrock's API does not allow thinking mode when tool_choice forces tool use.
        When forcing a tool (e.g., for structured_output retry), we temporarily disable thinking.

        Args:
            tool_choice: The tool choice configuration.

        Returns:
            A dict containing additionalModelRequestFields if configured, or empty dict.
        """
        additional_fields = self.config.get("additional_request_fields")
        if not additional_fields:
            return {}

        # Check if tool_choice is forcing tool use ("any" or specific "tool")
        is_forcing_tool = tool_choice is not None and ("any" in tool_choice or "tool" in tool_choice)

        if is_forcing_tool and "thinking" in additional_fields:
            # Create a copy without the thinking key
            fields_without_thinking = {k: v for k, v in additional_fields.items() if k != "thinking"}
            if fields_without_thinking:
                return {"additionalModelRequestFields": fields_without_thinking}
            return {}

        return {"additionalModelRequestFields": additional_fields}

    def _inject_cache_point(self, messages: list[dict[str, Any]]) -> None:
        """Inject a cache point at the end of the last assistant message.

        Args:
            messages: List of messages to inject cache point into (modified in place).
        """
        if not messages:
            return

        last_assistant_idx: int | None = None
        for msg_idx, msg in enumerate(messages):
            content = msg.get("content", [])
            for block_idx, block in reversed(list(enumerate(content))):
                if "cachePoint" in block:
                    del content[block_idx]
                    logger.warning(
                        "msg_idx=<%s>, block_idx=<%s> | stripped existing cache point (auto mode manages cache points)",
                        msg_idx,
                        block_idx,
                    )
            if msg.get("role") == "assistant":
                last_assistant_idx = msg_idx

        if last_assistant_idx is not None and messages[last_assistant_idx].get("content"):
            messages[last_assistant_idx]["content"].append({"cachePoint": {"type": "default"}})
            logger.debug("msg_idx=<%s> | added cache point to last assistant message", last_assistant_idx)

    def _format_bedrock_messages(self, messages: Messages) -> list[dict[str, Any]]:
        """Format messages for Bedrock API compatibility.

        This function ensures messages conform to Bedrock's expected format by:
        - Filtering out SDK_UNKNOWN_MEMBER content blocks
        - Eagerly filtering content blocks to only include Bedrock-supported fields
        - Ensuring all message content blocks are properly formatted for the Bedrock API
        - Optionally wrapping the last user message in guardrailConverseContent blocks
        - Injecting cache points when cache_config is set with strategy="auto"

        Args:
            messages: List of messages to format

        Returns:
            Messages formatted for Bedrock API compatibility

        Note:
            Unlike other APIs that ignore unknown fields, Bedrock only accepts a strict
            subset of fields for each content block type and throws validation exceptions
            when presented with unexpected fields. Therefore, we must eagerly filter all
            content blocks to remove any additional fields before sending to Bedrock.
            https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ContentBlock.html
        """
        cleaned_messages: list[dict[str, Any]] = []

        filtered_unknown_members = False
        dropped_deepseek_reasoning_content = False

        guardrail_latest_message = self.config.get("guardrail_latest_message", False)

        for idx, message in enumerate(messages):
            cleaned_content: list[dict[str, Any]] = []

            for content_block in message["content"]:
                # Filter out SDK_UNKNOWN_MEMBER content blocks
                if "SDK_UNKNOWN_MEMBER" in content_block:
                    filtered_unknown_members = True
                    continue

                # DeepSeek models have issues with reasoningContent
                # TODO: Replace with systematic model configuration registry (https://github.com/strands-agents/sdk-python/issues/780)
                if "deepseek" in self.config["model_id"].lower() and "reasoningContent" in content_block:
                    dropped_deepseek_reasoning_content = True
                    continue

                # Format content blocks for Bedrock API compatibility
                formatted_content = self._format_request_message_content(content_block)

                # Wrap text or image content in guardrailContent if this is the last user message
                if (
                    guardrail_latest_message
                    and idx == len(messages) - 1
                    and message["role"] == "user"
                    and ("text" in formatted_content or "image" in formatted_content)
                ):
                    if "text" in formatted_content:
                        formatted_content = {"guardContent": {"text": {"text": formatted_content["text"]}}}
                    elif "image" in formatted_content:
                        formatted_content = {"guardContent": {"image": formatted_content["image"]}}

                cleaned_content.append(formatted_content)

            # Create new message with cleaned content (skip if empty)
            if cleaned_content:
                cleaned_messages.append({"content": cleaned_content, "role": message["role"]})

        if filtered_unknown_members:
            logger.warning(
                "Filtered out SDK_UNKNOWN_MEMBER content blocks from messages, consider upgrading boto3 version"
            )
        if dropped_deepseek_reasoning_content:
            logger.debug(
                "Filtered DeepSeek reasoningContent content blocks from messages - https://api-docs.deepseek.com/guides/reasoning_model#multi-round-conversation"
            )

        # Inject cache point into cleaned_messages (not original messages) if cache_config is set
        cache_config = self.config.get("cache_config")
        if cache_config and cache_config.strategy == "auto":
            if self._supports_caching:
                self._inject_cache_point(cleaned_messages)
            else:
                logger.warning(
                    "model_id=<%s> | cache_config is enabled but this model does not support caching",
                    self.config.get("model_id"),
                )

        return cleaned_messages

    def _should_include_tool_result_status(self) -> bool:
        """Determine whether to include tool result status based on current config."""
        include_status = self.config.get("include_tool_result_status", "auto")

        if include_status is True:
            return True
        elif include_status is False:
            return False
        else:  # "auto"
            return any(model in self.config["model_id"] for model in _MODELS_INCLUDE_STATUS)

    def _format_request_message_content(self, content: ContentBlock) -> dict[str, Any]:
        """Format a Bedrock content block.

        Bedrock strictly validates content blocks and throws exceptions for unknown fields.
        This function extracts only the fields that Bedrock supports for each content type.

        Args:
            content: Content block to format.

        Returns:
            Bedrock formatted content block.

        Raises:
            TypeError: If the content block type is not supported by Bedrock.
        """
        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_CachePointBlock.html
        if "cachePoint" in content:
            return {"cachePoint": {"type": content["cachePoint"]["type"]}}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_DocumentBlock.html
        if "document" in content:
            document = content["document"]
            result: dict[str, Any] = {}

            # Handle required fields (all optional due to total=False)
            if "name" in document:
                result["name"] = document["name"]
            if "format" in document:
                result["format"] = document["format"]

            # Handle source
            if "source" in document:
                result["source"] = {"bytes": document["source"]["bytes"]}

            # Handle optional fields
            if "citations" in document and document["citations"] is not None:
                result["citations"] = {"enabled": document["citations"]["enabled"]}
            if "context" in document:
                result["context"] = document["context"]

            return {"document": result}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_GuardrailConverseContentBlock.html
        if "guardContent" in content:
            guard = content["guardContent"]
            guard_text = guard["text"]
            result = {"text": {"text": guard_text["text"], "qualifiers": guard_text["qualifiers"]}}
            return {"guardContent": result}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ImageBlock.html
        if "image" in content:
            image = content["image"]
            source = image["source"]
            formatted_source = {}
            if "bytes" in source:
                formatted_source = {"bytes": source["bytes"]}
            result = {"format": image["format"], "source": formatted_source}
            return {"image": result}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ReasoningContentBlock.html
        if "reasoningContent" in content:
            reasoning = content["reasoningContent"]
            result = {}

            if "reasoningText" in reasoning:
                reasoning_text = reasoning["reasoningText"]
                result["reasoningText"] = {}
                if "text" in reasoning_text:
                    result["reasoningText"]["text"] = reasoning_text["text"]
                # Only include signature if truthy (avoid empty strings)
                if reasoning_text.get("signature"):
                    result["reasoningText"]["signature"] = reasoning_text["signature"]

            if "redactedContent" in reasoning:
                result["redactedContent"] = reasoning["redactedContent"]

            return {"reasoningContent": result}

        # Pass through text and other simple content types
        if "text" in content:
            return {"text": content["text"]}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolResultBlock.html
        if "toolResult" in content:
            tool_result = content["toolResult"]
            formatted_content: list[dict[str, Any]] = []
            for tool_result_content in tool_result["content"]:
                if "json" in tool_result_content:
                    # Handle json field since not in ContentBlock but valid in ToolResultContent
                    formatted_content.append({"json": tool_result_content["json"]})
                else:
                    formatted_content.append(
                        self._format_request_message_content(cast(ContentBlock, tool_result_content))
                    )

            result = {
                "content": formatted_content,
                "toolUseId": tool_result["toolUseId"],
            }
            if "status" in tool_result and self._should_include_tool_result_status():
                result["status"] = tool_result["status"]
            return {"toolResult": result}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_ToolUseBlock.html
        if "toolUse" in content:
            tool_use = content["toolUse"]
            return {
                "toolUse": {
                    "input": tool_use["input"],
                    "name": tool_use["name"],
                    "toolUseId": tool_use["toolUseId"],
                }
            }

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_VideoBlock.html
        if "video" in content:
            video = content["video"]
            source = video["source"]
            formatted_source = {}
            if "bytes" in source:
                formatted_source = {"bytes": source["bytes"]}
            result = {"format": video["format"], "source": formatted_source}
            return {"video": result}

        # https://docs.aws.amazon.com/bedrock/latest/APIReference/API_runtime_CitationsContentBlock.html
        if "citationsContent" in content:
            citations = content["citationsContent"]
            result = {}

            if "citations" in citations:
                result["citations"] = []
                for citation in citations["citations"]:
                    filtered_citation: dict[str, Any] = {}
                    if "location" in citation:
                        filtered_citation["location"] = citation["location"]
                    if "sourceContent" in citation:
                        filtered_source_content: list[dict[str, Any]] = []
                        for source_content in citation["sourceContent"]:
                            if "text" in source_content:
                                filtered_source_content.append({"text": source_content["text"]})
                        if filtered_source_content:
                            filtered_citation["sourceContent"] = filtered_source_content
                    if "title" in citation:
                        filtered_citation["title"] = citation["title"]
                    result["citations"].append(filtered_citation)

            if "content" in citations:
                filtered_content: list[dict[str, Any]] = []
                for generated_content in citations["content"]:
                    if "text" in generated_content:
                        filtered_content.append({"text": generated_content["text"]})
                if filtered_content:
                    result["content"] = filtered_content

            return {"citationsContent": result}

        raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

    def _has_blocked_guardrail(self, guardrail_data: dict[str, Any]) -> bool:
        """Check if guardrail data contains any blocked policies.

        Args:
            guardrail_data: Guardrail data from trace information.

        Returns:
            True if any blocked guardrail is detected, False otherwise.
        """
        input_assessment = guardrail_data.get("inputAssessment", {})
        output_assessments = guardrail_data.get("outputAssessments", {})

        # Check input assessments
        if any(self._find_detected_and_blocked_policy(assessment) for assessment in input_assessment.values()):
            return True

        # Check output assessments
        if any(self._find_detected_and_blocked_policy(assessment) for assessment in output_assessments.values()):
            return True

        return False

    def _generate_redaction_events(self) -> list[StreamEvent]:
        """Generate redaction events based on configuration.

        Returns:
            List of redaction events to yield.
        """
        events: list[StreamEvent] = []

        if self.config.get("guardrail_redact_input", True):
            logger.debug("Redacting user input due to guardrail.")
            events.append(
                {
                    "redactContent": {
                        "redactUserContentMessage": self.config.get(
                            "guardrail_redact_input_message", "[User input redacted.]"
                        )
                    }
                }
            )

        if self.config.get("guardrail_redact_output", False):
            logger.debug("Redacting assistant output due to guardrail.")
            events.append(
                {
                    "redactContent": {
                        "redactAssistantContentMessage": self.config.get(
                            "guardrail_redact_output_message",
                            "[Assistant output redacted.]",
                        )
                    }
                }
            )

        return events

    @override
    async def stream(
        self,
        messages: Messages,
        tool_specs: list[ToolSpec] | None = None,
        system_prompt: str | None = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the Bedrock model.

        This method calls either the Bedrock converse_stream API or the converse API
        based on the streaming parameter in the configuration.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events.

        Raises:
            ContextWindowOverflowException: If the input exceeds the model's context window.
            ModelThrottledException: If the model service is throttling requests.
        """

        def callback(event: StreamEvent | None = None) -> None:
            loop.call_soon_threadsafe(queue.put_nowait, event)
            if event is None:
                return

        loop = asyncio.get_event_loop()
        queue: asyncio.Queue[StreamEvent | None] = asyncio.Queue()

        # Handle backward compatibility: if system_prompt is provided but system_prompt_content is None
        if system_prompt and system_prompt_content is None:
            system_prompt_content = [{"text": system_prompt}]

        thread = asyncio.to_thread(self._stream, callback, messages, tool_specs, system_prompt_content, tool_choice)
        task = asyncio.create_task(thread)

        while True:
            event = await queue.get()
            if event is None:
                break

            yield event

        await task

    def _stream(
        self,
        callback: Callable[..., None],
        messages: Messages,
        tool_specs: list[ToolSpec] | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        tool_choice: ToolChoice | None = None,
    ) -> None:
        """Stream conversation with the Bedrock model.

        This method operates in a separate thread to avoid blocking the async event loop with the call to
        Bedrock's converse_stream.

        Args:
            callback: Function to send events to the main thread.
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt_content: System prompt content blocks to provide context to the model.
            tool_choice: Selection strategy for tool invocation.

        Raises:
            ContextWindowOverflowException: If the input exceeds the model's context window.
            ModelThrottledException: If the model service is throttling requests.
        """
        try:
            logger.debug("formatting request")
            request = self._format_request(messages, tool_specs, system_prompt_content, tool_choice)
            logger.debug("request=<%s>", request)

            logger.debug("invoking model")
            streaming = self.config.get("streaming", True)

            logger.debug("got response from model")
            if streaming:
                response = self.client.converse_stream(**request)
                # Track tool use events to fix stopReason for streaming responses
                has_tool_use = False
                for chunk in response["stream"]:
                    if (
                        "metadata" in chunk
                        and "trace" in chunk["metadata"]
                        and "guardrail" in chunk["metadata"]["trace"]
                    ):
                        guardrail_data = chunk["metadata"]["trace"]["guardrail"]
                        if self._has_blocked_guardrail(guardrail_data):
                            for event in self._generate_redaction_events():
                                callback(event)

                    # Track if we see tool use events
                    if "contentBlockStart" in chunk and chunk["contentBlockStart"].get("start", {}).get("toolUse"):
                        has_tool_use = True

                    # Fix stopReason for streaming responses that contain tool use
                    if (
                        has_tool_use
                        and "messageStop" in chunk
                        and (message_stop := chunk["messageStop"]).get("stopReason") == "end_turn"
                    ):
                        # Create corrected chunk with tool_use stopReason
                        modified_chunk = chunk.copy()
                        modified_chunk["messageStop"] = message_stop.copy()
                        modified_chunk["messageStop"]["stopReason"] = "tool_use"
                        logger.warning("Override stop reason from end_turn to tool_use")
                        callback(modified_chunk)
                    else:
                        callback(chunk)

            else:
                response = self.client.converse(**request)
                for event in self._convert_non_streaming_to_streaming(response):
                    callback(event)

                if (
                    "trace" in response
                    and "guardrail" in response["trace"]
                    and self._has_blocked_guardrail(response["trace"]["guardrail"])
                ):
                    for event in self._generate_redaction_events():
                        callback(event)

        except ClientError as e:
            error_message = str(e)

            if (
                e.response["Error"]["Code"] == "ThrottlingException"
                or e.response["Error"]["Code"] == "throttlingException"
            ):
                raise ModelThrottledException(error_message) from e

            if any(overflow_message in error_message for overflow_message in BEDROCK_CONTEXT_WINDOW_OVERFLOW_MESSAGES):
                logger.warning("bedrock threw context window overflow error")
                raise ContextWindowOverflowException(e) from e

            region = self.client.meta.region_name

            # Aid in debugging by adding more information
            add_exception_note(e, f"└ Bedrock region: {region}")
            add_exception_note(e, f"└ Model id: {self.config.get('model_id')}")

            if (
                e.response["Error"]["Code"] == "AccessDeniedException"
                and "You don't have access to the model" in error_message
            ):
                add_exception_note(
                    e,
                    "└ For more information see "
                    "https://strandsagents.com/latest/user-guide/concepts/model-providers/amazon-bedrock/#model-access-issue",
                )

            if (
                e.response["Error"]["Code"] == "ValidationException"
                and "with on-demand throughput isn’t supported" in error_message
            ):
                add_exception_note(
                    e,
                    "└ For more information see "
                    "https://strandsagents.com/latest/user-guide/concepts/model-providers/amazon-bedrock/#on-demand-throughput-isnt-supported",
                )

            raise e

        finally:
            callback()
            logger.debug("finished streaming response from model")

    def _convert_non_streaming_to_streaming(self, response: dict[str, Any]) -> Iterable[StreamEvent]:
        """Convert a non-streaming response to the streaming format.

        Args:
            response: The non-streaming response from the Bedrock model.

        Returns:
            An iterable of response events in the streaming format.
        """
        # Yield messageStart event
        yield {"messageStart": {"role": response["output"]["message"]["role"]}}

        # Process content blocks
        for content in cast(list[ContentBlock], response["output"]["message"]["content"]):
            # Yield contentBlockStart event if needed
            if "toolUse" in content:
                yield {
                    "contentBlockStart": {
                        "start": {
                            "toolUse": {
                                "toolUseId": content["toolUse"]["toolUseId"],
                                "name": content["toolUse"]["name"],
                            }
                        },
                    }
                }

                # For tool use, we need to yield the input as a delta
                input_value = json.dumps(content["toolUse"]["input"])

                yield {"contentBlockDelta": {"delta": {"toolUse": {"input": input_value}}}}
            elif "text" in content:
                # Then yield the text as a delta
                yield {
                    "contentBlockDelta": {
                        "delta": {"text": content["text"]},
                    }
                }
            elif "reasoningContent" in content:
                # Then yield the reasoning content as a delta
                yield {
                    "contentBlockDelta": {
                        "delta": {"reasoningContent": {"text": content["reasoningContent"]["reasoningText"]["text"]}}
                    }
                }

                if "signature" in content["reasoningContent"]["reasoningText"]:
                    yield {
                        "contentBlockDelta": {
                            "delta": {
                                "reasoningContent": {
                                    "signature": content["reasoningContent"]["reasoningText"]["signature"]
                                }
                            }
                        }
                    }
            elif "citationsContent" in content:
                # For non-streaming citations, emit text and metadata deltas in sequence
                # to match streaming behavior where they flow naturally
                if "content" in content["citationsContent"]:
                    text_content = "".join([content["text"] for content in content["citationsContent"]["content"]])
                    yield {
                        "contentBlockDelta": {"delta": {"text": text_content}},
                    }

                for citation in content["citationsContent"]["citations"]:
                    # Then emit citation metadata (for structure)

                    citation_metadata: CitationsDelta = {
                        "title": citation["title"],
                        "location": citation["location"],
                        "sourceContent": citation["sourceContent"],
                    }
                    yield {"contentBlockDelta": {"delta": {"citation": citation_metadata}}}

            # Yield contentBlockStop event
            yield {"contentBlockStop": {}}

        # Yield messageStop event
        # Fix stopReason for models that return end_turn when they should return tool_use on non-streaming side
        current_stop_reason = response["stopReason"]
        if current_stop_reason == "end_turn":
            message_content = response["output"]["message"]["content"]
            if any("toolUse" in content for content in message_content):
                current_stop_reason = "tool_use"
                logger.warning("Override stop reason from end_turn to tool_use")

        yield {
            "messageStop": {
                "stopReason": current_stop_reason,
                "additionalModelResponseFields": response.get("additionalModelResponseFields"),
            }
        }

        # Yield metadata event
        if "usage" in response or "metrics" in response or "trace" in response:
            metadata: StreamEvent = {"metadata": {}}
            if "usage" in response:
                metadata["metadata"]["usage"] = response["usage"]
            if "metrics" in response:
                metadata["metadata"]["metrics"] = response["metrics"]
            if "trace" in response:
                metadata["metadata"]["trace"] = response["trace"]
            yield metadata

    def _find_detected_and_blocked_policy(self, input: Any) -> bool:
        """Recursively checks if the assessment contains a detected and blocked guardrail.

        Args:
            input: The assessment to check.

        Returns:
            True if the input contains a detected and blocked guardrail, False otherwise.

        """
        # Check if input is a dictionary
        if isinstance(input, dict):
            # Check if current dictionary has action: BLOCKED and detected: true
            if input.get("action") == "BLOCKED" and input.get("detected") and isinstance(input.get("detected"), bool):
                return True

            # Otherwise, recursively check all values in the dictionary
            return self._find_detected_and_blocked_policy(input.values())

        elif isinstance(input, (list, ValuesView)):
            # Handle case where input is a list or dict_values
            return any(self._find_detected_and_blocked_policy(item) for item in input)
        # Otherwise return False
        return False

    @override
    async def structured_output(
        self,
        output_model: type[T],
        prompt: Messages,
        system_prompt: str | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[dict[str, T | Any], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.
        """
        tool_spec = convert_pydantic_to_tool_spec(output_model)

        response = self.stream(
            messages=prompt,
            tool_specs=[tool_spec],
            system_prompt=system_prompt,
            tool_choice=cast(ToolChoice, {"any": {}}),
            **kwargs,
        )
        async for event in streaming.process_stream(response):
            yield event

        stop_reason, messages, _, _ = event["stop"]

        if stop_reason != "tool_use":
            raise ValueError(f'Model returned stop_reason: {stop_reason} instead of "tool_use".')

        content = messages["content"]
        output_response: dict[str, Any] | None = None
        for block in content:
            # if the tool use name doesn't match the tool spec name, skip, and if the block is not a tool use, skip.
            # if the tool use name never matches, raise an error.
            if block.get("toolUse") and block["toolUse"]["name"] == tool_spec["name"]:
                output_response = block["toolUse"]["input"]
            else:
                continue

        if output_response is None:
            raise ValueError("No valid tool use or tool use input was found in the Bedrock response.")

        yield {"output": output_model(**output_response)}

    @staticmethod
    def _get_default_model_with_warning(region_name: str, model_config: BedrockConfig | None = None) -> str:
        """Get the default Bedrock modelId based on region.

        If the region is not **known** to support inference then we show a helpful warning
        that compliments the exception that Bedrock will throw.
        If the customer provided a model_id in their config or they overrode the `DEFAULT_BEDROCK_MODEL_ID`
        then we should not process further.

        Args:
            region_name (str): region for bedrock model
            model_config (Optional[dict[str, Any]]): Model Config that caller passes in on init
        """
        if DEFAULT_BEDROCK_MODEL_ID != _DEFAULT_BEDROCK_MODEL_ID.format("us"):
            return DEFAULT_BEDROCK_MODEL_ID

        model_config = model_config or {}
        if model_config.get("model_id"):
            return model_config["model_id"]

        prefix_inference_map = {"ap": "apac"}  # some inference endpoints can be a bit different than the region prefix

        prefix = "-".join(region_name.split("-")[:-2]).lower()  # handles `us-east-1` or `us-gov-east-1`
        if prefix not in {"us", "eu", "ap", "us-gov"}:
            warnings.warn(
                f"""
            ================== WARNING ==================

                This region {region_name} does not support
                our default inference endpoint: {_DEFAULT_BEDROCK_MODEL_ID.format(prefix)}.
                Update the agent to pass in a 'model_id' like so:
                ```
                Agent(..., model='valid_model_id', ...)
                ````
                Documentation: https://docs.aws.amazon.com/bedrock/latest/userguide/inference-profiles-support.html

            ==================================================
            """,
                stacklevel=2,
            )

        return _DEFAULT_BEDROCK_MODEL_ID.format(prefix_inference_map.get(prefix, prefix))

BedrockConfig

Bases: TypedDict

Configuration options for Bedrock models.

Attributes:

Name Type Description
additional_args dict[str, Any] | None

Any additional arguments to include in the request

additional_request_fields dict[str, Any] | None

Additional fields to include in the Bedrock request

additional_response_field_paths list[str] | None

Additional response field paths to extract

cache_prompt str | None

Cache point type for the system prompt (deprecated, use cache_config)

cache_config CacheConfig | None

Configuration for prompt caching. Use CacheConfig(strategy="auto") for automatic caching.

cache_tools str | None

Cache point type for tools

guardrail_id str | None

ID of the guardrail to apply

guardrail_trace Literal['enabled', 'disabled', 'enabled_full'] | None

Guardrail trace mode. Defaults to enabled.

guardrail_version str | None

Version of the guardrail to apply

guardrail_stream_processing_mode Literal['sync', 'async'] | None

The guardrail processing mode

guardrail_redact_input bool | None

Flag to redact input if a guardrail is triggered. Defaults to True.

guardrail_redact_input_message str | None

If a Bedrock Input guardrail triggers, replace the input with this message.

guardrail_redact_output bool | None

Flag to redact output if guardrail is triggered. Defaults to False.

guardrail_redact_output_message str | None

If a Bedrock Output guardrail triggers, replace output with this message.

guardrail_latest_message bool | None

Flag to send only the lastest user message to guardrails. Defaults to False.

max_tokens int | None

Maximum number of tokens to generate in the response

model_id str

The Bedrock model ID (e.g., "us.anthropic.claude-sonnet-4-20250514-v1:0")

include_tool_result_status Literal['auto'] | bool | None

Flag to include status field in tool results. True includes status, False removes status, "auto" determines based on model_id. Defaults to "auto".

stop_sequences list[str] | None

List of sequences that will stop generation when encountered

streaming bool | None

Flag to enable/disable streaming. Defaults to True.

temperature float | None

Controls randomness in generation (higher = more random)

top_p float | None

Controls diversity via nucleus sampling (alternative to temperature)

Source code in strands/models/bedrock.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
class BedrockConfig(TypedDict, total=False):
    """Configuration options for Bedrock models.

    Attributes:
        additional_args: Any additional arguments to include in the request
        additional_request_fields: Additional fields to include in the Bedrock request
        additional_response_field_paths: Additional response field paths to extract
        cache_prompt: Cache point type for the system prompt (deprecated, use cache_config)
        cache_config: Configuration for prompt caching. Use CacheConfig(strategy="auto") for automatic caching.
        cache_tools: Cache point type for tools
        guardrail_id: ID of the guardrail to apply
        guardrail_trace: Guardrail trace mode. Defaults to enabled.
        guardrail_version: Version of the guardrail to apply
        guardrail_stream_processing_mode: The guardrail processing mode
        guardrail_redact_input: Flag to redact input if a guardrail is triggered. Defaults to True.
        guardrail_redact_input_message: If a Bedrock Input guardrail triggers, replace the input with this message.
        guardrail_redact_output: Flag to redact output if guardrail is triggered. Defaults to False.
        guardrail_redact_output_message: If a Bedrock Output guardrail triggers, replace output with this message.
        guardrail_latest_message: Flag to send only the lastest user message to guardrails.
            Defaults to False.
        max_tokens: Maximum number of tokens to generate in the response
        model_id: The Bedrock model ID (e.g., "us.anthropic.claude-sonnet-4-20250514-v1:0")
        include_tool_result_status: Flag to include status field in tool results.
            True includes status, False removes status, "auto" determines based on model_id. Defaults to "auto".
        stop_sequences: List of sequences that will stop generation when encountered
        streaming: Flag to enable/disable streaming. Defaults to True.
        temperature: Controls randomness in generation (higher = more random)
        top_p: Controls diversity via nucleus sampling (alternative to temperature)
    """

    additional_args: dict[str, Any] | None
    additional_request_fields: dict[str, Any] | None
    additional_response_field_paths: list[str] | None
    cache_prompt: str | None
    cache_config: CacheConfig | None
    cache_tools: str | None
    guardrail_id: str | None
    guardrail_trace: Literal["enabled", "disabled", "enabled_full"] | None
    guardrail_stream_processing_mode: Literal["sync", "async"] | None
    guardrail_version: str | None
    guardrail_redact_input: bool | None
    guardrail_redact_input_message: str | None
    guardrail_redact_output: bool | None
    guardrail_redact_output_message: str | None
    guardrail_latest_message: bool | None
    max_tokens: int | None
    model_id: str
    include_tool_result_status: Literal["auto"] | bool | None
    stop_sequences: list[str] | None
    streaming: bool | None
    temperature: float | None
    top_p: float | None

__init__(*, boto_session=None, boto_client_config=None, region_name=None, endpoint_url=None, **model_config)

Initialize provider instance.

Parameters:

Name Type Description Default
boto_session Session | None

Boto Session to use when calling the Bedrock Model.

None
boto_client_config Config | None

Configuration to use when creating the Bedrock-Runtime Boto Client.

None
region_name str | None

AWS region to use for the Bedrock service. Defaults to the AWS_REGION environment variable if set, or "us-west-2" if not set.

None
endpoint_url str | None

Custom endpoint URL for VPC endpoints (PrivateLink)

None
**model_config Unpack[BedrockConfig]

Configuration options for the Bedrock model.

{}
Source code in strands/models/bedrock.py
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
def __init__(
    self,
    *,
    boto_session: boto3.Session | None = None,
    boto_client_config: BotocoreConfig | None = None,
    region_name: str | None = None,
    endpoint_url: str | None = None,
    **model_config: Unpack[BedrockConfig],
):
    """Initialize provider instance.

    Args:
        boto_session: Boto Session to use when calling the Bedrock Model.
        boto_client_config: Configuration to use when creating the Bedrock-Runtime Boto Client.
        region_name: AWS region to use for the Bedrock service.
            Defaults to the AWS_REGION environment variable if set, or "us-west-2" if not set.
        endpoint_url: Custom endpoint URL for VPC endpoints (PrivateLink)
        **model_config: Configuration options for the Bedrock model.
    """
    if region_name and boto_session:
        raise ValueError("Cannot specify both `region_name` and `boto_session`.")

    session = boto_session or boto3.Session()
    resolved_region = region_name or session.region_name or os.environ.get("AWS_REGION") or DEFAULT_BEDROCK_REGION
    self.config = BedrockModel.BedrockConfig(
        model_id=BedrockModel._get_default_model_with_warning(resolved_region, model_config),
        include_tool_result_status="auto",
    )
    self.update_config(**model_config)

    logger.debug("config=<%s> | initializing", self.config)

    # Add strands-agents to the request user agent
    if boto_client_config:
        existing_user_agent = getattr(boto_client_config, "user_agent_extra", None)

        # Append 'strands-agents' to existing user_agent_extra or set it if not present
        if existing_user_agent:
            new_user_agent = f"{existing_user_agent} strands-agents"
        else:
            new_user_agent = "strands-agents"

        client_config = boto_client_config.merge(BotocoreConfig(user_agent_extra=new_user_agent))
    else:
        client_config = BotocoreConfig(user_agent_extra="strands-agents", read_timeout=DEFAULT_READ_TIMEOUT)

    self.client = session.client(
        service_name="bedrock-runtime",
        config=client_config,
        endpoint_url=endpoint_url,
        region_name=resolved_region,
    )

    logger.debug("region=<%s> | bedrock client created", self.client.meta.region_name)

get_config()

Get the current Bedrock Model configuration.

Returns:

Type Description
BedrockConfig

The Bedrock model configuration.

Source code in strands/models/bedrock.py
196
197
198
199
200
201
202
203
@override
def get_config(self) -> BedrockConfig:
    """Get the current Bedrock Model configuration.

    Returns:
        The Bedrock model configuration.
    """
    return self.config

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) async

Stream conversation with the Bedrock model.

This method calls either the Bedrock converse_stream API or the converse API based on the streaming parameter in the configuration.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs list[ToolSpec] | None

List of tool specifications to make available to the model.

None
system_prompt str | None

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Model events.

Raises:

Type Description
ContextWindowOverflowException

If the input exceeds the model's context window.

ModelThrottledException

If the model service is throttling requests.

Source code in strands/models/bedrock.py
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
@override
async def stream(
    self,
    messages: Messages,
    tool_specs: list[ToolSpec] | None = None,
    system_prompt: str | None = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the Bedrock model.

    This method calls either the Bedrock converse_stream API or the converse API
    based on the streaming parameter in the configuration.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events.

    Raises:
        ContextWindowOverflowException: If the input exceeds the model's context window.
        ModelThrottledException: If the model service is throttling requests.
    """

    def callback(event: StreamEvent | None = None) -> None:
        loop.call_soon_threadsafe(queue.put_nowait, event)
        if event is None:
            return

    loop = asyncio.get_event_loop()
    queue: asyncio.Queue[StreamEvent | None] = asyncio.Queue()

    # Handle backward compatibility: if system_prompt is provided but system_prompt_content is None
    if system_prompt and system_prompt_content is None:
        system_prompt_content = [{"text": system_prompt}]

    thread = asyncio.to_thread(self._stream, callback, messages, tool_specs, system_prompt_content, tool_choice)
    task = asyncio.create_task(thread)

    while True:
        event = await queue.get()
        if event is None:
            break

        yield event

    await task

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output from the model.

Parameters:

Name Type Description Default
output_model type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt str | None

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, T | Any], None]

Model events with the last being the structured output.

Source code in strands/models/bedrock.py
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
@override
async def structured_output(
    self,
    output_model: type[T],
    prompt: Messages,
    system_prompt: str | None = None,
    **kwargs: Any,
) -> AsyncGenerator[dict[str, T | Any], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.
    """
    tool_spec = convert_pydantic_to_tool_spec(output_model)

    response = self.stream(
        messages=prompt,
        tool_specs=[tool_spec],
        system_prompt=system_prompt,
        tool_choice=cast(ToolChoice, {"any": {}}),
        **kwargs,
    )
    async for event in streaming.process_stream(response):
        yield event

    stop_reason, messages, _, _ = event["stop"]

    if stop_reason != "tool_use":
        raise ValueError(f'Model returned stop_reason: {stop_reason} instead of "tool_use".')

    content = messages["content"]
    output_response: dict[str, Any] | None = None
    for block in content:
        # if the tool use name doesn't match the tool spec name, skip, and if the block is not a tool use, skip.
        # if the tool use name never matches, raise an error.
        if block.get("toolUse") and block["toolUse"]["name"] == tool_spec["name"]:
            output_response = block["toolUse"]["input"]
        else:
            continue

    if output_response is None:
        raise ValueError("No valid tool use or tool use input was found in the Bedrock response.")

    yield {"output": output_model(**output_response)}

update_config(**model_config)

Update the Bedrock Model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[BedrockConfig]

Configuration overrides.

{}
Source code in strands/models/bedrock.py
186
187
188
189
190
191
192
193
194
@override
def update_config(self, **model_config: Unpack[BedrockConfig]) -> None:  # type: ignore
    """Update the Bedrock Model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    validate_config_keys(model_config, self.BedrockConfig)
    self.config.update(model_config)

CacheConfig dataclass

Configuration for prompt caching.

Attributes:

Name Type Description
strategy Literal['auto']

Caching strategy to use. - "auto": Automatically inject cachePoint at optimal positions

Source code in strands/models/model.py
20
21
22
23
24
25
26
27
28
29
@dataclass
class CacheConfig:
    """Configuration for prompt caching.

    Attributes:
        strategy: Caching strategy to use.
            - "auto": Automatically inject cachePoint at optimal positions
    """

    strategy: Literal["auto"] = "auto"

CitationsDelta

Bases: TypedDict

Contains incremental updates to citation information during streaming.

This allows clients to build up citation data progressively as the response is generated.

Attributes:

Name Type Description
location CitationLocation

Specifies the precise location within a source document where cited content can be found. This can include character-level positions, page numbers, or document chunks depending on the document type and indexing method.

sourceContent list[CitationSourceContentDelta]

The specific content from the source document that was referenced or cited in the generated response.

title str

The title or identifier of the source document being cited.

Source code in strands/types/streaming.py
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
class CitationsDelta(TypedDict, total=False):
    """Contains incremental updates to citation information during streaming.

    This allows clients to build up citation data progressively as the
    response is generated.

    Attributes:
        location: Specifies the precise location within a source document
            where cited content can be found. This can include character-level
            positions, page numbers, or document chunks depending on the
            document type and indexing method.
        sourceContent: The specific content from the source document that was
            referenced or cited in the generated response.
        title: The title or identifier of the source document being cited.
    """

    location: CitationLocation
    sourceContent: list[CitationSourceContentDelta]
    title: str

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

ContextWindowOverflowException

Bases: Exception

Exception raised when the context window is exceeded.

This exception is raised when the input to a model exceeds the maximum context window size that the model can handle. This typically occurs when the combined length of the conversation history, system prompt, and current message is too large for the model to process.

Source code in strands/types/exceptions.py
38
39
40
41
42
43
44
45
46
class ContextWindowOverflowException(Exception):
    """Exception raised when the context window is exceeded.

    This exception is raised when the input to a model exceeds the maximum context window size that the model can
    handle. This typically occurs when the combined length of the conversation history, system prompt, and current
    message is too large for the model to process.
    """

    pass

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: type[T], prompt: Messages, system_prompt: str | None = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, T | Any], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: list[ToolSpec] | None = None,
        system_prompt: str | None = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        invocation_state: dict[str, Any] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            invocation_state: Caller-provided state/context that was passed to the agent when it was invoked.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
49
50
51
52
53
54
55
56
57
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, invocation_state=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs list[ToolSpec] | None

List of tool specifications to make available to the model.

None
system_prompt str | None

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
invocation_state dict[str, Any] | None

Caller-provided state/context that was passed to the agent when it was invoked.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: list[ToolSpec] | None = None,
    system_prompt: str | None = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    invocation_state: dict[str, Any] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        invocation_state: Caller-provided state/context that was passed to the agent when it was invoked.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt str | None

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, T | Any], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: type[T], prompt: Messages, system_prompt: str | None = None, **kwargs: Any
) -> AsyncGenerator[dict[str, T | Any], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
39
40
41
42
43
44
45
46
47
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

ModelThrottledException

Bases: Exception

Exception raised when the model is throttled.

This exception is raised when the model is throttled by the service. This typically occurs when the service is throttling the requests from the client.

Source code in strands/types/exceptions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ModelThrottledException(Exception):
    """Exception raised when the model is throttled.

    This exception is raised when the model is throttled by the service. This typically occurs when the service is
    throttling the requests from the client.
    """

    def __init__(self, message: str) -> None:
        """Initialize exception.

        Args:
            message: The message from the service that describes the throttling.
        """
        self.message = message
        super().__init__(message)

    pass

__init__(message)

Initialize exception.

Parameters:

Name Type Description Default
message str

The message from the service that describes the throttling.

required
Source code in strands/types/exceptions.py
62
63
64
65
66
67
68
69
def __init__(self, message: str) -> None:
    """Initialize exception.

    Args:
        message: The message from the service that describes the throttling.
    """
    self.message = message
    super().__init__(message)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

SystemContentBlock

Bases: TypedDict

Contains configurations for instructions to provide the model for how to handle input.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

text str

A system prompt for the model.

Source code in strands/types/content.py
102
103
104
105
106
107
108
109
110
111
class SystemContentBlock(TypedDict, total=False):
    """Contains configurations for instructions to provide the model for how to handle input.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        text: A system prompt for the model.
    """

    cachePoint: CachePoint
    text: str

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

add_exception_note(exception, note)

Add a note to an exception, compatible with Python 3.10+.

Uses add_note() if it's available (Python 3.11+) or modifies the exception message if it is not.

Source code in strands/_exception_notes.py
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
def add_exception_note(exception: Exception, note: str) -> None:
    """Add a note to an exception, compatible with Python 3.10+.

    Uses add_note() if it's available (Python 3.11+) or modifies the exception message if it is not.
    """
    if supports_add_note:
        # we ignore the mypy error because the version-check for add_note is extracted into a constant up above and
        # mypy doesn't detect that
        exception.add_note(note)  # type: ignore
    else:
        # For Python 3.10, append note to the exception message
        if hasattr(exception, "args") and exception.args:
            exception.args = (f"{exception.args[0]}\n{note}",) + exception.args[1:]
        else:
            exception.args = (note,)

convert_pydantic_to_tool_spec(model, description=None)

Converts a Pydantic model to a tool description for the Amazon Bedrock Converse API.

Handles optional vs. required fields, resolves $refs, and uses docstrings.

Parameters:

Name Type Description Default
model type[BaseModel]

The Pydantic model class to convert

required
description str | None

Optional description of the tool's purpose

None

Returns:

Name Type Description
ToolSpec ToolSpec

Dict containing the Bedrock tool specification

Source code in strands/tools/structured_output/structured_output_utils.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def convert_pydantic_to_tool_spec(
    model: type[BaseModel],
    description: str | None = None,
) -> ToolSpec:
    """Converts a Pydantic model to a tool description for the Amazon Bedrock Converse API.

    Handles optional vs. required fields, resolves $refs, and uses docstrings.

    Args:
        model: The Pydantic model class to convert
        description: Optional description of the tool's purpose

    Returns:
        ToolSpec: Dict containing the Bedrock tool specification
    """
    name = model.__name__

    # Get the JSON schema
    input_schema = model.model_json_schema()

    # Get model docstring for description if not provided
    model_description = description
    if not model_description and model.__doc__:
        model_description = model.__doc__.strip()

    # Process all referenced models to ensure proper docstrings
    # This step is important for gathering descriptions from referenced models
    _process_referenced_models(input_schema, model)

    # Now, let's fully expand the nested models with all their properties
    _expand_nested_properties(input_schema, model)

    # Flatten the schema
    flattened_schema = _flatten_schema(input_schema)

    final_schema = flattened_schema

    # Construct the tool specification
    return ToolSpec(
        name=name,
        description=model_description or f"{name} structured output tool",
        inputSchema={"json": final_schema},
    )

noop_tool()

No-op tool to satisfy tool spec requirement when tool messages are present.

Some model providers (e.g., Bedrock) will return an error response if tool uses and tool results are present in messages without any tool specs configured. Consequently, if the summarization agent has no registered tools, summarization will fail. As a workaround, we register the no-op tool.

Source code in strands/tools/_tool_helpers.py
 8
 9
10
11
12
13
14
15
16
@tool(name="noop", description="This is a fake tool that MUST be completely ignored.")
def noop_tool() -> None:
    """No-op tool to satisfy tool spec requirement when tool messages are present.

    Some model providers (e.g., Bedrock) will return an error response if tool uses and tool results are present in
    messages without any tool specs configured. Consequently, if the summarization agent has no registered tools,
    summarization will fail. As a workaround, we register the no-op tool.
    """
    pass

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
def validate_config_keys(config_dict: Mapping[str, Any], config_class: type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )