Skip to content

strands.agent

This package provides the core Agent interface and supporting components for building AI agents with the SDK.

It includes:

  • Agent: The main interface for interacting with AI models and tools
  • ConversationManager: Classes for managing conversation history and context windows

strands.agent.agent

Agent Interface.

This module implements the core Agent class that serves as the primary entry point for interacting with foundation models and tools in the SDK.

The Agent interface supports two complementary interaction patterns:

  1. Natural language for conversation: agent("Analyze this data")
  2. Method-style for direct tool access: agent.tool.tool_name(param1="value")

Agent

Core Agent interface.

An agent orchestrates the following workflow:

  1. Receives user input
  2. Processes the input using a language model
  3. Decides whether to use tools to gather information or perform actions
  4. Executes those tools and receives results
  5. Continues reasoning with the new information
  6. Produces a final response
Source code in strands/agent/agent.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
class Agent:
    """Core Agent interface.

    An agent orchestrates the following workflow:

    1. Receives user input
    2. Processes the input using a language model
    3. Decides whether to use tools to gather information or perform actions
    4. Executes those tools and receives results
    5. Continues reasoning with the new information
    6. Produces a final response
    """

    # For backwards compatibility
    ToolCaller = _ToolCaller

    def __init__(
        self,
        model: Union[Model, str, None] = None,
        messages: Optional[Messages] = None,
        tools: Optional[list[Union[str, dict[str, str], "ToolProvider", Any]]] = None,
        system_prompt: Optional[str | list[SystemContentBlock]] = None,
        structured_output_model: Optional[Type[BaseModel]] = None,
        callback_handler: Optional[
            Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
        ] = _DEFAULT_CALLBACK_HANDLER,
        conversation_manager: Optional[ConversationManager] = None,
        record_direct_tool_call: bool = True,
        load_tools_from_directory: bool = False,
        trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
        *,
        agent_id: Optional[str] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        state: Optional[Union[AgentState, dict]] = None,
        hooks: Optional[list[HookProvider]] = None,
        session_manager: Optional[SessionManager] = None,
        tool_executor: Optional[ToolExecutor] = None,
    ):
        """Initialize the Agent with the specified configuration.

        Args:
            model: Provider for running inference or a string representing the model-id for Bedrock to use.
                Defaults to strands.models.BedrockModel if None.
            messages: List of initial messages to pre-load into the conversation.
                Defaults to an empty list if None.
            tools: List of tools to make available to the agent.
                Can be specified as:

                - String tool names (e.g., "retrieve")
                - File paths (e.g., "/path/to/tool.py")
                - Imported Python modules (e.g., from strands_tools import current_time)
                - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
                - ToolProvider instances for managed tool collections
                - Functions decorated with `@strands.tool` decorator.

                If provided, only these tools will be available. If None, all tools will be available.
            system_prompt: System prompt to guide model behavior.
                Can be a string or a list of SystemContentBlock objects for advanced features like caching.
                If None, the model will behave according to its default settings.
            structured_output_model: Pydantic model type(s) for structured output.
                When specified, all agent calls will attempt to return structured output of this type.
                This can be overridden on the agent invocation.
                Defaults to None (no structured output).
            callback_handler: Callback for processing events as they happen during agent execution.
                If not provided (using the default), a new PrintingCallbackHandler instance is created.
                If explicitly set to None, null_callback_handler is used.
            conversation_manager: Manager for conversation history and context window.
                Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
            record_direct_tool_call: Whether to record direct tool calls in message history.
                Defaults to True.
            load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
                Defaults to False.
            trace_attributes: Custom trace attributes to apply to the agent's trace span.
            agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
                Defaults to "default".
            name: name of the Agent
                Defaults to "Strands Agents".
            description: description of what the Agent does
                Defaults to None.
            state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
                Defaults to an empty AgentState object.
            hooks: hooks to be added to the agent hook registry
                Defaults to None.
            session_manager: Manager for handling agent sessions including conversation history and state.
                If provided, enables session-based persistence and state management.
            tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

        Raises:
            ValueError: If agent id contains path separators.
        """
        self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
        self.messages = messages if messages is not None else []
        # initializing self._system_prompt for backwards compatibility
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
        self._default_structured_output_model = structured_output_model
        self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
        self.name = name or _DEFAULT_AGENT_NAME
        self.description = description

        # If not provided, create a new PrintingCallbackHandler instance
        # If explicitly set to None, use null_callback_handler
        # Otherwise use the passed callback_handler
        self.callback_handler: Union[Callable[..., Any], PrintingCallbackHandler]
        if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
            self.callback_handler = PrintingCallbackHandler()
        elif callback_handler is None:
            self.callback_handler = null_callback_handler
        else:
            self.callback_handler = callback_handler

        self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

        # Process trace attributes to ensure they're of compatible types
        self.trace_attributes: dict[str, AttributeValue] = {}
        if trace_attributes:
            for k, v in trace_attributes.items():
                if isinstance(v, (str, int, float, bool)) or (
                    isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
                ):
                    self.trace_attributes[k] = v

        self.record_direct_tool_call = record_direct_tool_call
        self.load_tools_from_directory = load_tools_from_directory

        self.tool_registry = ToolRegistry()

        # Process tool list if provided
        if tools is not None:
            self.tool_registry.process_tools(tools)

        # Initialize tools and configuration
        self.tool_registry.initialize_tools(self.load_tools_from_directory)
        if load_tools_from_directory:
            self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

        self.event_loop_metrics = EventLoopMetrics()

        # Initialize tracer instance (no-op if not configured)
        self.tracer = get_tracer()
        self.trace_span: Optional[trace_api.Span] = None

        # Initialize agent state management
        if state is not None:
            if isinstance(state, dict):
                self.state = AgentState(state)
            elif isinstance(state, AgentState):
                self.state = state
            else:
                raise ValueError("state must be an AgentState object or a dict")
        else:
            self.state = AgentState()

        self.tool_caller = _ToolCaller(self)

        self.hooks = HookRegistry()

        self._interrupt_state = _InterruptState()

        # Initialize session management functionality
        self._session_manager = session_manager
        if self._session_manager:
            self.hooks.add_hook(self._session_manager)

        self.tool_executor = tool_executor or ConcurrentToolExecutor()

        if hooks:
            for hook in hooks:
                self.hooks.add_hook(hook)
        self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

    @property
    def system_prompt(self) -> str | None:
        """Get the system prompt as a string for backwards compatibility.

        Returns the system prompt as a concatenated string when it contains text content,
        or None if no text content is present. This maintains backwards compatibility
        with existing code that expects system_prompt to be a string.

        Returns:
            The system prompt as a string, or None if no text content exists.
        """
        return self._system_prompt

    @system_prompt.setter
    def system_prompt(self, value: str | list[SystemContentBlock] | None) -> None:
        """Set the system prompt and update internal content representation.

        Accepts either a string or list of SystemContentBlock objects.
        When set, both the backwards-compatible string representation and the internal
        content block representation are updated to maintain consistency.

        Args:
            value: System prompt as string, list of SystemContentBlock objects, or None.
                  - str: Simple text prompt (most common use case)
                  - list[SystemContentBlock]: Content blocks with features like caching
                  - None: Clear the system prompt
        """
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(value)

    @property
    def tool(self) -> _ToolCaller:
        """Call tool as a function.

        Returns:
            Tool caller through which user can invoke tool as a function.

        Example:
            ```
            agent = Agent(tools=[calculator])
            agent.tool.calculator(...)
            ```
        """
        return self.tool_caller

    @property
    def tool_names(self) -> list[str]:
        """Get a list of all registered tool names.

        Returns:
            Names of all tools available to this agent.
        """
        all_tools = self.tool_registry.get_all_tools_config()
        return list(all_tools.keys())

    def __call__(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: `agent("hello!")`
        - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
        - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
        - No input: `agent()` - uses existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
                - structured_output: Parsed structured output when structured_output_model was specified
        """
        return run_async(
            lambda: self.invoke_async(
                prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
            )
        )

    async def invoke_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result: object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
        """
        events = self.stream_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
        async for event in events:
            _ = event

        return cast(AgentResult, event["result"])

    def structured_output(self, output_model: Type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history

        Raises:
            ValueError: If no conversation history or prompt is provided.
        """
        warnings.warn(
            "Agent.structured_output method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )

        return run_async(lambda: self.structured_output_async(output_model, prompt))

    async def structured_output_async(self, output_model: Type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent (will not be added to conversation history).

        Raises:
            ValueError: If no conversation history or prompt is provided.
        -
        """
        if self._interrupt_state.activated:
            raise RuntimeError("cannot call structured output during interrupt")

        warnings.warn(
            "Agent.structured_output_async method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))
        with self.tracer.tracer.start_as_current_span(
            "execute_structured_output", kind=trace_api.SpanKind.CLIENT
        ) as structured_output_span:
            try:
                if not self.messages and not prompt:
                    raise ValueError("No conversation history or prompt provided")

                temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

                structured_output_span.set_attributes(
                    {
                        "gen_ai.system": "strands-agents",
                        "gen_ai.agent.name": self.name,
                        "gen_ai.agent.id": self.agent_id,
                        "gen_ai.operation.name": "execute_structured_output",
                    }
                )
                if self.system_prompt:
                    structured_output_span.add_event(
                        "gen_ai.system.message",
                        attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                    )
                for message in temp_messages:
                    structured_output_span.add_event(
                        f"gen_ai.{message['role']}.message",
                        attributes={"role": message["role"], "content": serialize(message["content"])},
                    )
                events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
                async for event in events:
                    if isinstance(event, TypedEvent):
                        event.prepare(invocation_state={})
                        if event.is_callback_event:
                            self.callback_handler(**event.as_dict())

                structured_output_span.add_event(
                    "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
                )
                return event["output"]

            finally:
                await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

    def cleanup(self) -> None:
        """Clean up resources used by the agent.

        This method cleans up all tool providers that require explicit cleanup,
        such as MCP clients. It should be called when the agent is no longer needed
        to ensure proper resource cleanup.

        Note: This method uses a "belt and braces" approach with automatic cleanup
        through finalizers as a fallback, but explicit cleanup is recommended.
        """
        self.tool_registry.cleanup()

    def __del__(self) -> None:
        """Clean up resources when agent is garbage collected."""
        # __del__ is called even when an exception is thrown in the constructor,
        # so there is no guarantee tool_registry was set..
        if hasattr(self, "tool_registry"):
            self.tool_registry.cleanup()

    async def stream_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AsyncIterator[Any]:
        """Process a natural language prompt and yield events as an async iterator.

        This method provides an asynchronous interface for streaming agent events with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass to the event loop.[Deprecating]

        Yields:
            An async iterator that yields events. Each event is a dictionary containing
               information about the current state of processing, such as:

                - data: Text content being generated
                - complete: Whether this is the final chunk
                - current_tool_use: Information about tools being executed
                - And other event data provided by the callback handler

        Raises:
            Exception: Any exceptions from the agent invocation will be propagated to the caller.

        Example:
            ```python
            async for event in agent.stream_async("Analyze this data"):
                if "data" in event:
                    yield event["data"]
            ```
        """
        self._interrupt_state.resume(prompt)

        merged_state = {}
        if kwargs:
            warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
            merged_state.update(kwargs)
            if invocation_state is not None:
                merged_state["invocation_state"] = invocation_state
        else:
            if invocation_state is not None:
                merged_state = invocation_state

        callback_handler = self.callback_handler
        if kwargs:
            callback_handler = kwargs.get("callback_handler", self.callback_handler)

        # Process input and get message to add (if any)
        messages = await self._convert_prompt_to_messages(prompt)

        self.trace_span = self._start_agent_trace_span(messages)

        with trace_api.use_span(self.trace_span):
            try:
                events = self._run_loop(messages, merged_state, structured_output_model)

                async for event in events:
                    event.prepare(invocation_state=merged_state)

                    if event.is_callback_event:
                        as_dict = event.as_dict()
                        callback_handler(**as_dict)
                        yield as_dict

                result = AgentResult(*event["stop"])
                callback_handler(result=result)
                yield AgentResultEvent(result=result).as_dict()

                self._end_agent_trace_span(response=result)

            except Exception as e:
                self._end_agent_trace_span(error=e)
                raise

    async def _run_loop(
        self,
        messages: Messages,
        invocation_state: dict[str, Any],
        structured_output_model: Type[BaseModel] | None = None,
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the agent's event loop with the given message and parameters.

        Args:
            messages: The input messages to add to the conversation.
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_model: Optional Pydantic model type for structured output.

        Yields:
            Events from the event loop cycle.
        """
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))

        try:
            yield InitEventLoopEvent()

            for message in messages:
                await self._append_message(message)

            structured_output_context = StructuredOutputContext(
                structured_output_model or self._default_structured_output_model
            )

            # Execute the event loop cycle with retry logic for context limits
            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                # Signal from the model provider that the message sent by the user should be redacted,
                # likely due to a guardrail.
                if (
                    isinstance(event, ModelStreamChunkEvent)
                    and event.chunk
                    and event.chunk.get("redactContent")
                    and event.chunk["redactContent"].get("redactUserContentMessage")
                ):
                    self.messages[-1]["content"] = self._redact_user_content(
                        self.messages[-1]["content"], str(event.chunk["redactContent"]["redactUserContentMessage"])
                    )
                    if self._session_manager:
                        self._session_manager.redact_latest_message(self.messages[-1], self)
                yield event

        finally:
            self.conversation_manager.apply_management(self)
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

    async def _execute_event_loop_cycle(
        self, invocation_state: dict[str, Any], structured_output_context: StructuredOutputContext | None = None
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the event loop cycle with retry logic for context window limits.

        This internal method handles the execution of the event loop cycle and implements
        retry logic for handling context window overflow exceptions by reducing the
        conversation context and retrying.

        Args:
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_context: Optional structured output context for this invocation.

        Yields:
            Events of the loop cycle.
        """
        # Add `Agent` to invocation_state to keep backwards-compatibility
        invocation_state["agent"] = self

        if structured_output_context:
            structured_output_context.register_tool(self.tool_registry)

        try:
            events = event_loop_cycle(
                agent=self,
                invocation_state=invocation_state,
                structured_output_context=structured_output_context,
            )
            async for event in events:
                yield event

        except ContextWindowOverflowException as e:
            # Try reducing the context size and retrying
            self.conversation_manager.reduce_context(self, e=e)

            # Sync agent after reduce_context to keep conversation_manager_state up to date in the session
            if self._session_manager:
                self._session_manager.sync_agent(self)

            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                yield event

        finally:
            if structured_output_context:
                structured_output_context.cleanup(self.tool_registry)

    async def _convert_prompt_to_messages(self, prompt: AgentInput) -> Messages:
        if self._interrupt_state.activated:
            return []

        messages: Messages | None = None
        if prompt is not None:
            # Check if the latest message is toolUse
            if len(self.messages) > 0 and any("toolUse" in content for content in self.messages[-1]["content"]):
                # Add toolResult message after to have a valid conversation
                logger.info(
                    "Agents latest message is toolUse, appending a toolResult message to have valid conversation."
                )
                tool_use_ids = [
                    content["toolUse"]["toolUseId"] for content in self.messages[-1]["content"] if "toolUse" in content
                ]
                await self._append_message(
                    {
                        "role": "user",
                        "content": generate_missing_tool_result_content(tool_use_ids),
                    }
                )
            if isinstance(prompt, str):
                # String input - convert to user message
                messages = [{"role": "user", "content": [{"text": prompt}]}]
            elif isinstance(prompt, list):
                if len(prompt) == 0:
                    # Empty list
                    messages = []
                # Check if all item in input list are dictionaries
                elif all(isinstance(item, dict) for item in prompt):
                    # Check if all items are messages
                    if all(all(key in item for key in Message.__annotations__.keys()) for item in prompt):
                        # Messages input - add all messages to conversation
                        messages = cast(Messages, prompt)

                    # Check if all items are content blocks
                    elif all(any(key in ContentBlock.__annotations__.keys() for key in item) for item in prompt):
                        # Treat as List[ContentBlock] input - convert to user message
                        # This allows invalid structures to be passed through to the model
                        messages = [{"role": "user", "content": cast(list[ContentBlock], prompt)}]
        else:
            messages = []
        if messages is None:
            raise ValueError("Input prompt must be of type: `str | list[Contentblock] | Messages | None`.")
        return messages

    def _start_agent_trace_span(self, messages: Messages) -> trace_api.Span:
        """Starts a trace span for the agent.

        Args:
            messages: The input messages.
        """
        model_id = self.model.config.get("model_id") if hasattr(self.model, "config") else None
        return self.tracer.start_agent_span(
            messages=messages,
            agent_name=self.name,
            model_id=model_id,
            tools=self.tool_names,
            system_prompt=self.system_prompt,
            custom_trace_attributes=self.trace_attributes,
            tools_config=self.tool_registry.get_all_tools_config(),
        )

    def _end_agent_trace_span(
        self,
        response: Optional[AgentResult] = None,
        error: Optional[Exception] = None,
    ) -> None:
        """Ends a trace span for the agent.

        Args:
            span: The span to end.
            response: Response to record as a trace attribute.
            error: Error to record as a trace attribute.
        """
        if self.trace_span:
            trace_attributes: dict[str, Any] = {
                "span": self.trace_span,
            }

            if response:
                trace_attributes["response"] = response
            if error:
                trace_attributes["error"] = error

            self.tracer.end_agent_span(**trace_attributes)

    def _initialize_system_prompt(
        self, system_prompt: str | list[SystemContentBlock] | None
    ) -> tuple[str | None, list[SystemContentBlock] | None]:
        """Initialize system prompt fields from constructor input.

        Maintains backwards compatibility by keeping system_prompt as str when string input
        provided, avoiding breaking existing consumers.

        Maps system_prompt input to both string and content block representations:
        - If string: system_prompt=string, _system_prompt_content=[{text: string}]
        - If list with text elements: system_prompt=concatenated_text, _system_prompt_content=list
        - If list without text elements: system_prompt=None, _system_prompt_content=list
        - If None: system_prompt=None, _system_prompt_content=None
        """
        if isinstance(system_prompt, str):
            return system_prompt, [{"text": system_prompt}]
        elif isinstance(system_prompt, list):
            # Concatenate all text elements for backwards compatibility, None if no text found
            text_parts = [block["text"] for block in system_prompt if "text" in block]
            system_prompt_str = "\n".join(text_parts) if text_parts else None
            return system_prompt_str, system_prompt
        else:
            return None, None

    async def _append_message(self, message: Message) -> None:
        """Appends a message to the agent's list of messages and invokes the callbacks for the MessageCreatedEvent."""
        self.messages.append(message)
        await self.hooks.invoke_callbacks_async(MessageAddedEvent(agent=self, message=message))

    def _redact_user_content(self, content: list[ContentBlock], redact_message: str) -> list[ContentBlock]:
        """Redact user content preserving toolResult blocks.

        Args:
            content: content blocks to be redacted
            redact_message: redact message to be replaced

        Returns:
            Redacted content, as follows:
            - if the message contains at least a toolResult block,
                all toolResult blocks(s) are kept, redacting only the result content;
            - otherwise, the entire content of the message is replaced
                with a single text block with the redact message.
        """
        redacted_content = []
        for block in content:
            if "toolResult" in block:
                block["toolResult"]["content"] = [{"text": redact_message}]
                redacted_content.append(block)

        if not redacted_content:
            # Text content is added only if no toolResult blocks were found
            redacted_content = [{"text": redact_message}]

        return redacted_content

system_prompt property writable

Get the system prompt as a string for backwards compatibility.

Returns the system prompt as a concatenated string when it contains text content, or None if no text content is present. This maintains backwards compatibility with existing code that expects system_prompt to be a string.

Returns:

Type Description
str | None

The system prompt as a string, or None if no text content exists.

tool property

Call tool as a function.

Returns:

Type Description
_ToolCaller

Tool caller through which user can invoke tool as a function.

Example
agent = Agent(tools=[calculator])
agent.tool.calculator(...)

tool_names property

Get a list of all registered tool names.

Returns:

Type Description
list[str]

Names of all tools available to this agent.

__call__(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: agent("hello!") - ContentBlock list: agent([{"text": "hello"}, {"image": {...}}]) - Message list: agent([{"role": "user", "content": [{"text": "hello"}]}]) - No input: agent() - uses existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Type Description
AgentResult

Result object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
  • structured_output: Parsed structured output when structured_output_model was specified
Source code in strands/agent/agent.py
def __call__(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: `agent("hello!")`
    - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
    - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
    - No input: `agent()` - uses existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
            - structured_output: Parsed structured output when structured_output_model was specified
    """
    return run_async(
        lambda: self.invoke_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
    )

__del__()

Clean up resources when agent is garbage collected.

Source code in strands/agent/agent.py
def __del__(self) -> None:
    """Clean up resources when agent is garbage collected."""
    # __del__ is called even when an exception is thrown in the constructor,
    # so there is no guarantee tool_registry was set..
    if hasattr(self, "tool_registry"):
        self.tool_registry.cleanup()

__init__(model=None, messages=None, tools=None, system_prompt=None, structured_output_model=None, callback_handler=_DEFAULT_CALLBACK_HANDLER, conversation_manager=None, record_direct_tool_call=True, load_tools_from_directory=False, trace_attributes=None, *, agent_id=None, name=None, description=None, state=None, hooks=None, session_manager=None, tool_executor=None)

Initialize the Agent with the specified configuration.

Parameters:

Name Type Description Default
model Union[Model, str, None]

Provider for running inference or a string representing the model-id for Bedrock to use. Defaults to strands.models.BedrockModel if None.

None
messages Optional[Messages]

List of initial messages to pre-load into the conversation. Defaults to an empty list if None.

None
tools Optional[list[Union[str, dict[str, str], ToolProvider, Any]]]

List of tools to make available to the agent. Can be specified as:

  • String tool names (e.g., "retrieve")
  • File paths (e.g., "/path/to/tool.py")
  • Imported Python modules (e.g., from strands_tools import current_time)
  • Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
  • ToolProvider instances for managed tool collections
  • Functions decorated with @strands.tool decorator.

If provided, only these tools will be available. If None, all tools will be available.

None
system_prompt Optional[str | list[SystemContentBlock]]

System prompt to guide model behavior. Can be a string or a list of SystemContentBlock objects for advanced features like caching. If None, the model will behave according to its default settings.

None
structured_output_model Optional[Type[BaseModel]]

Pydantic model type(s) for structured output. When specified, all agent calls will attempt to return structured output of this type. This can be overridden on the agent invocation. Defaults to None (no structured output).

None
callback_handler Optional[Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]]

Callback for processing events as they happen during agent execution. If not provided (using the default), a new PrintingCallbackHandler instance is created. If explicitly set to None, null_callback_handler is used.

_DEFAULT_CALLBACK_HANDLER
conversation_manager Optional[ConversationManager]

Manager for conversation history and context window. Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.

None
record_direct_tool_call bool

Whether to record direct tool calls in message history. Defaults to True.

True
load_tools_from_directory bool

Whether to load and automatically reload tools in the ./tools/ directory. Defaults to False.

False
trace_attributes Optional[Mapping[str, AttributeValue]]

Custom trace attributes to apply to the agent's trace span.

None
agent_id Optional[str]

Optional ID for the agent, useful for session management and multi-agent scenarios. Defaults to "default".

None
name Optional[str]

name of the Agent Defaults to "Strands Agents".

None
description Optional[str]

description of what the Agent does Defaults to None.

None
state Optional[Union[AgentState, dict]]

stateful information for the agent. Can be either an AgentState object, or a json serializable dict. Defaults to an empty AgentState object.

None
hooks Optional[list[HookProvider]]

hooks to be added to the agent hook registry Defaults to None.

None
session_manager Optional[SessionManager]

Manager for handling agent sessions including conversation history and state. If provided, enables session-based persistence and state management.

None
tool_executor Optional[ToolExecutor]

Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

None

Raises:

Type Description
ValueError

If agent id contains path separators.

Source code in strands/agent/agent.py
def __init__(
    self,
    model: Union[Model, str, None] = None,
    messages: Optional[Messages] = None,
    tools: Optional[list[Union[str, dict[str, str], "ToolProvider", Any]]] = None,
    system_prompt: Optional[str | list[SystemContentBlock]] = None,
    structured_output_model: Optional[Type[BaseModel]] = None,
    callback_handler: Optional[
        Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
    ] = _DEFAULT_CALLBACK_HANDLER,
    conversation_manager: Optional[ConversationManager] = None,
    record_direct_tool_call: bool = True,
    load_tools_from_directory: bool = False,
    trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
    *,
    agent_id: Optional[str] = None,
    name: Optional[str] = None,
    description: Optional[str] = None,
    state: Optional[Union[AgentState, dict]] = None,
    hooks: Optional[list[HookProvider]] = None,
    session_manager: Optional[SessionManager] = None,
    tool_executor: Optional[ToolExecutor] = None,
):
    """Initialize the Agent with the specified configuration.

    Args:
        model: Provider for running inference or a string representing the model-id for Bedrock to use.
            Defaults to strands.models.BedrockModel if None.
        messages: List of initial messages to pre-load into the conversation.
            Defaults to an empty list if None.
        tools: List of tools to make available to the agent.
            Can be specified as:

            - String tool names (e.g., "retrieve")
            - File paths (e.g., "/path/to/tool.py")
            - Imported Python modules (e.g., from strands_tools import current_time)
            - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
            - ToolProvider instances for managed tool collections
            - Functions decorated with `@strands.tool` decorator.

            If provided, only these tools will be available. If None, all tools will be available.
        system_prompt: System prompt to guide model behavior.
            Can be a string or a list of SystemContentBlock objects for advanced features like caching.
            If None, the model will behave according to its default settings.
        structured_output_model: Pydantic model type(s) for structured output.
            When specified, all agent calls will attempt to return structured output of this type.
            This can be overridden on the agent invocation.
            Defaults to None (no structured output).
        callback_handler: Callback for processing events as they happen during agent execution.
            If not provided (using the default), a new PrintingCallbackHandler instance is created.
            If explicitly set to None, null_callback_handler is used.
        conversation_manager: Manager for conversation history and context window.
            Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
        record_direct_tool_call: Whether to record direct tool calls in message history.
            Defaults to True.
        load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
            Defaults to False.
        trace_attributes: Custom trace attributes to apply to the agent's trace span.
        agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
            Defaults to "default".
        name: name of the Agent
            Defaults to "Strands Agents".
        description: description of what the Agent does
            Defaults to None.
        state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
            Defaults to an empty AgentState object.
        hooks: hooks to be added to the agent hook registry
            Defaults to None.
        session_manager: Manager for handling agent sessions including conversation history and state.
            If provided, enables session-based persistence and state management.
        tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

    Raises:
        ValueError: If agent id contains path separators.
    """
    self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
    self.messages = messages if messages is not None else []
    # initializing self._system_prompt for backwards compatibility
    self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
    self._default_structured_output_model = structured_output_model
    self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
    self.name = name or _DEFAULT_AGENT_NAME
    self.description = description

    # If not provided, create a new PrintingCallbackHandler instance
    # If explicitly set to None, use null_callback_handler
    # Otherwise use the passed callback_handler
    self.callback_handler: Union[Callable[..., Any], PrintingCallbackHandler]
    if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
        self.callback_handler = PrintingCallbackHandler()
    elif callback_handler is None:
        self.callback_handler = null_callback_handler
    else:
        self.callback_handler = callback_handler

    self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

    # Process trace attributes to ensure they're of compatible types
    self.trace_attributes: dict[str, AttributeValue] = {}
    if trace_attributes:
        for k, v in trace_attributes.items():
            if isinstance(v, (str, int, float, bool)) or (
                isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
            ):
                self.trace_attributes[k] = v

    self.record_direct_tool_call = record_direct_tool_call
    self.load_tools_from_directory = load_tools_from_directory

    self.tool_registry = ToolRegistry()

    # Process tool list if provided
    if tools is not None:
        self.tool_registry.process_tools(tools)

    # Initialize tools and configuration
    self.tool_registry.initialize_tools(self.load_tools_from_directory)
    if load_tools_from_directory:
        self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

    self.event_loop_metrics = EventLoopMetrics()

    # Initialize tracer instance (no-op if not configured)
    self.tracer = get_tracer()
    self.trace_span: Optional[trace_api.Span] = None

    # Initialize agent state management
    if state is not None:
        if isinstance(state, dict):
            self.state = AgentState(state)
        elif isinstance(state, AgentState):
            self.state = state
        else:
            raise ValueError("state must be an AgentState object or a dict")
    else:
        self.state = AgentState()

    self.tool_caller = _ToolCaller(self)

    self.hooks = HookRegistry()

    self._interrupt_state = _InterruptState()

    # Initialize session management functionality
    self._session_manager = session_manager
    if self._session_manager:
        self.hooks.add_hook(self._session_manager)

    self.tool_executor = tool_executor or ConcurrentToolExecutor()

    if hooks:
        for hook in hooks:
            self.hooks.add_hook(hook)
    self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

cleanup()

Clean up resources used by the agent.

This method cleans up all tool providers that require explicit cleanup, such as MCP clients. It should be called when the agent is no longer needed to ensure proper resource cleanup.

Note: This method uses a "belt and braces" approach with automatic cleanup through finalizers as a fallback, but explicit cleanup is recommended.

Source code in strands/agent/agent.py
def cleanup(self) -> None:
    """Clean up resources used by the agent.

    This method cleans up all tool providers that require explicit cleanup,
    such as MCP clients. It should be called when the agent is no longer needed
    to ensure proper resource cleanup.

    Note: This method uses a "belt and braces" approach with automatic cleanup
    through finalizers as a fallback, but explicit cleanup is recommended.
    """
    self.tool_registry.cleanup()

invoke_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Name Type Description
Result AgentResult

object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
Source code in strands/agent/agent.py
async def invoke_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result: object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
    """
    events = self.stream_async(
        prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
    )
    async for event in events:
        _ = event

    return cast(AgentResult, event["result"])

stream_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt and yield events as an async iterator.

This method provides an asynchronous interface for streaming agent events with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass to the event loop.[Deprecating]

{}

Yields:

Type Description
AsyncIterator[Any]

An async iterator that yields events. Each event is a dictionary containing information about the current state of processing, such as:

  • data: Text content being generated
  • complete: Whether this is the final chunk
  • current_tool_use: Information about tools being executed
  • And other event data provided by the callback handler

Raises:

Type Description
Exception

Any exceptions from the agent invocation will be propagated to the caller.

Example
async for event in agent.stream_async("Analyze this data"):
    if "data" in event:
        yield event["data"]
Source code in strands/agent/agent.py
async def stream_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AsyncIterator[Any]:
    """Process a natural language prompt and yield events as an async iterator.

    This method provides an asynchronous interface for streaming agent events with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass to the event loop.[Deprecating]

    Yields:
        An async iterator that yields events. Each event is a dictionary containing
           information about the current state of processing, such as:

            - data: Text content being generated
            - complete: Whether this is the final chunk
            - current_tool_use: Information about tools being executed
            - And other event data provided by the callback handler

    Raises:
        Exception: Any exceptions from the agent invocation will be propagated to the caller.

    Example:
        ```python
        async for event in agent.stream_async("Analyze this data"):
            if "data" in event:
                yield event["data"]
        ```
    """
    self._interrupt_state.resume(prompt)

    merged_state = {}
    if kwargs:
        warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
        merged_state.update(kwargs)
        if invocation_state is not None:
            merged_state["invocation_state"] = invocation_state
    else:
        if invocation_state is not None:
            merged_state = invocation_state

    callback_handler = self.callback_handler
    if kwargs:
        callback_handler = kwargs.get("callback_handler", self.callback_handler)

    # Process input and get message to add (if any)
    messages = await self._convert_prompt_to_messages(prompt)

    self.trace_span = self._start_agent_trace_span(messages)

    with trace_api.use_span(self.trace_span):
        try:
            events = self._run_loop(messages, merged_state, structured_output_model)

            async for event in events:
                event.prepare(invocation_state=merged_state)

                if event.is_callback_event:
                    as_dict = event.as_dict()
                    callback_handler(**as_dict)
                    yield as_dict

            result = AgentResult(*event["stop"])
            callback_handler(result=result)
            yield AgentResultEvent(result=result).as_dict()

            self._end_agent_trace_span(response=result)

        except Exception as e:
            self._end_agent_trace_span(error=e)
            raise

structured_output(output_model, prompt=None)

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model Type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

Source code in strands/agent/agent.py
def structured_output(self, output_model: Type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history

    Raises:
        ValueError: If no conversation history or prompt is provided.
    """
    warnings.warn(
        "Agent.structured_output method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )

    return run_async(lambda: self.structured_output_async(output_model, prompt))

structured_output_async(output_model, prompt=None) async

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model Type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent (will not be added to conversation history).

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

-

Source code in strands/agent/agent.py
async def structured_output_async(self, output_model: Type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent (will not be added to conversation history).

    Raises:
        ValueError: If no conversation history or prompt is provided.
    -
    """
    if self._interrupt_state.activated:
        raise RuntimeError("cannot call structured output during interrupt")

    warnings.warn(
        "Agent.structured_output_async method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )
    await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))
    with self.tracer.tracer.start_as_current_span(
        "execute_structured_output", kind=trace_api.SpanKind.CLIENT
    ) as structured_output_span:
        try:
            if not self.messages and not prompt:
                raise ValueError("No conversation history or prompt provided")

            temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

            structured_output_span.set_attributes(
                {
                    "gen_ai.system": "strands-agents",
                    "gen_ai.agent.name": self.name,
                    "gen_ai.agent.id": self.agent_id,
                    "gen_ai.operation.name": "execute_structured_output",
                }
            )
            if self.system_prompt:
                structured_output_span.add_event(
                    "gen_ai.system.message",
                    attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                )
            for message in temp_messages:
                structured_output_span.add_event(
                    f"gen_ai.{message['role']}.message",
                    attributes={"role": message["role"], "content": serialize(message["content"])},
                )
            events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
            async for event in events:
                if isinstance(event, TypedEvent):
                    event.prepare(invocation_state={})
                    if event.is_callback_event:
                        self.callback_handler(**event.as_dict())

            structured_output_span.add_event(
                "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
            )
            return event["output"]

        finally:
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

strands.agent.agent_result

Agent result handling for SDK.

This module defines the AgentResult class which encapsulates the complete response from an agent's processing cycle.

AgentResult dataclass

Represents the last result of invoking an agent with a prompt.

Attributes:

Name Type Description
stop_reason StopReason

The reason why the agent's processing stopped.

message Message

The last message generated by the agent.

metrics EventLoopMetrics

Performance metrics collected during processing.

state Any

Additional state information from the event loop.

interrupts Sequence[Interrupt] | None

List of interrupts if raised by user.

structured_output BaseModel | None

Parsed structured output when structured_output_model was specified.

Source code in strands/agent/agent_result.py
@dataclass
class AgentResult:
    """Represents the last result of invoking an agent with a prompt.

    Attributes:
        stop_reason: The reason why the agent's processing stopped.
        message: The last message generated by the agent.
        metrics: Performance metrics collected during processing.
        state: Additional state information from the event loop.
        interrupts: List of interrupts if raised by user.
        structured_output: Parsed structured output when structured_output_model was specified.
    """

    stop_reason: StopReason
    message: Message
    metrics: EventLoopMetrics
    state: Any
    interrupts: Sequence[Interrupt] | None = None
    structured_output: BaseModel | None = None

    def __str__(self) -> str:
        """Get the agent's last message as a string.

        This method extracts and concatenates all text content from the final message, ignoring any non-text content
        like images or structured data.

        Returns:
            The agent's last message as a string.
        """
        content_array = self.message.get("content", [])

        result = ""
        for item in content_array:
            if isinstance(item, dict) and "text" in item:
                result += item.get("text", "") + "\n"
        return result

    @classmethod
    def from_dict(cls, data: dict[str, Any]) -> "AgentResult":
        """Rehydrate an AgentResult from persisted JSON.

        Args:
            data: Dictionary containing the serialized AgentResult data
        Returns:
            AgentResult instance
        Raises:
            TypeError: If the data format is invalid@
        """
        if data.get("type") != "agent_result":
            raise TypeError(f"AgentResult.from_dict: unexpected type {data.get('type')!r}")

        message = cast(Message, data.get("message"))
        stop_reason = cast(StopReason, data.get("stop_reason"))

        return cls(message=message, stop_reason=stop_reason, metrics=EventLoopMetrics(), state={})

    def to_dict(self) -> dict[str, Any]:
        """Convert this AgentResult to JSON-serializable dictionary.

        Returns:
            Dictionary containing serialized AgentResult data
        """
        return {
            "type": "agent_result",
            "message": self.message,
            "stop_reason": self.stop_reason,
        }

__str__()

Get the agent's last message as a string.

This method extracts and concatenates all text content from the final message, ignoring any non-text content like images or structured data.

Returns:

Type Description
str

The agent's last message as a string.

Source code in strands/agent/agent_result.py
def __str__(self) -> str:
    """Get the agent's last message as a string.

    This method extracts and concatenates all text content from the final message, ignoring any non-text content
    like images or structured data.

    Returns:
        The agent's last message as a string.
    """
    content_array = self.message.get("content", [])

    result = ""
    for item in content_array:
        if isinstance(item, dict) and "text" in item:
            result += item.get("text", "") + "\n"
    return result

from_dict(data) classmethod

Rehydrate an AgentResult from persisted JSON.

Parameters:

Name Type Description Default
data dict[str, Any]

Dictionary containing the serialized AgentResult data

required
Source code in strands/agent/agent_result.py
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "AgentResult":
    """Rehydrate an AgentResult from persisted JSON.

    Args:
        data: Dictionary containing the serialized AgentResult data
    Returns:
        AgentResult instance
    Raises:
        TypeError: If the data format is invalid@
    """
    if data.get("type") != "agent_result":
        raise TypeError(f"AgentResult.from_dict: unexpected type {data.get('type')!r}")

    message = cast(Message, data.get("message"))
    stop_reason = cast(StopReason, data.get("stop_reason"))

    return cls(message=message, stop_reason=stop_reason, metrics=EventLoopMetrics(), state={})

to_dict()

Convert this AgentResult to JSON-serializable dictionary.

Returns:

Type Description
dict[str, Any]

Dictionary containing serialized AgentResult data

Source code in strands/agent/agent_result.py
def to_dict(self) -> dict[str, Any]:
    """Convert this AgentResult to JSON-serializable dictionary.

    Returns:
        Dictionary containing serialized AgentResult data
    """
    return {
        "type": "agent_result",
        "message": self.message,
        "stop_reason": self.stop_reason,
    }

strands.agent.conversation_manager

This package provides classes for managing conversation history during agent execution.

It includes:

  • ConversationManager: Abstract base class defining the conversation management interface
  • NullConversationManager: A no-op implementation that does not modify conversation history
  • SlidingWindowConversationManager: An implementation that maintains a sliding window of messages to control context size while preserving conversation coherence
  • SummarizingConversationManager: An implementation that summarizes older context instead of simply trimming it

Conversation managers help control memory usage and context length while maintaining relevant conversation state, which is critical for effective agent interactions.

strands.agent.conversation_manager.conversation_manager

Abstract interface for conversation history management.

ConversationManager

Bases: ABC

Abstract base class for managing conversation history.

This class provides an interface for implementing conversation management strategies to control the size of message arrays/conversation histories, helping to:

  • Manage memory usage
  • Control context length
  • Maintain relevant conversation state
Source code in strands/agent/conversation_manager/conversation_manager.py
class ConversationManager(ABC):
    """Abstract base class for managing conversation history.

    This class provides an interface for implementing conversation management strategies to control the size of message
    arrays/conversation histories, helping to:

    - Manage memory usage
    - Control context length
    - Maintain relevant conversation state
    """

    def __init__(self) -> None:
        """Initialize the ConversationManager.

        Attributes:
          removed_message_count: The messages that have been removed from the agents messages array.
              These represent messages provided by the user or LLM that have been removed, not messages
              included by the conversation manager through something like summarization.
        """
        self.removed_message_count = 0

    def restore_from_session(self, state: dict[str, Any]) -> Optional[list[Message]]:
        """Restore the Conversation Manager's state from a session.

        Args:
            state: Previous state of the conversation manager
        Returns:
            Optional list of messages to prepend to the agents messages. By default returns None.
        """
        if state.get("__name__") != self.__class__.__name__:
            raise ValueError("Invalid conversation manager state.")
        self.removed_message_count = state["removed_message_count"]
        return None

    def get_state(self) -> dict[str, Any]:
        """Get the current state of a Conversation Manager as a Json serializable dictionary."""
        return {
            "__name__": self.__class__.__name__,
            "removed_message_count": self.removed_message_count,
        }

    @abstractmethod
    def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
        """Applies management strategy to the provided agent.

        Processes the conversation history to maintain appropriate size by modifying the messages list in-place.
        Implementations should handle message pruning, summarization, or other size management techniques to keep the
        conversation context within desired bounds.

        Args:
            agent: The agent whose conversation history will be manage.
                This list is modified in-place.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        pass

    @abstractmethod
    def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
        """Called when the model's context window is exceeded.

        This method should implement the specific strategy for reducing the window size when a context overflow occurs.
        It is typically called after a ContextWindowOverflowException is caught.

        Implementations might use strategies such as:

        - Removing the N oldest messages
        - Summarizing older context
        - Applying importance-based filtering
        - Maintaining critical conversation markers

        Args:
            agent: The agent whose conversation history will be reduced.
                This list is modified in-place.
            e: The exception that triggered the context reduction, if any.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        pass
__init__()

Initialize the ConversationManager.

Attributes:

Name Type Description
removed_message_count

The messages that have been removed from the agents messages array. These represent messages provided by the user or LLM that have been removed, not messages included by the conversation manager through something like summarization.

Source code in strands/agent/conversation_manager/conversation_manager.py
def __init__(self) -> None:
    """Initialize the ConversationManager.

    Attributes:
      removed_message_count: The messages that have been removed from the agents messages array.
          These represent messages provided by the user or LLM that have been removed, not messages
          included by the conversation manager through something like summarization.
    """
    self.removed_message_count = 0
apply_management(agent, **kwargs) abstractmethod

Applies management strategy to the provided agent.

Processes the conversation history to maintain appropriate size by modifying the messages list in-place. Implementations should handle message pruning, summarization, or other size management techniques to keep the conversation context within desired bounds.

Parameters:

Name Type Description Default
agent Agent

The agent whose conversation history will be manage. This list is modified in-place.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/agent/conversation_manager/conversation_manager.py
@abstractmethod
def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
    """Applies management strategy to the provided agent.

    Processes the conversation history to maintain appropriate size by modifying the messages list in-place.
    Implementations should handle message pruning, summarization, or other size management techniques to keep the
    conversation context within desired bounds.

    Args:
        agent: The agent whose conversation history will be manage.
            This list is modified in-place.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    pass
get_state()

Get the current state of a Conversation Manager as a Json serializable dictionary.

Source code in strands/agent/conversation_manager/conversation_manager.py
def get_state(self) -> dict[str, Any]:
    """Get the current state of a Conversation Manager as a Json serializable dictionary."""
    return {
        "__name__": self.__class__.__name__,
        "removed_message_count": self.removed_message_count,
    }
reduce_context(agent, e=None, **kwargs) abstractmethod

Called when the model's context window is exceeded.

This method should implement the specific strategy for reducing the window size when a context overflow occurs. It is typically called after a ContextWindowOverflowException is caught.

Implementations might use strategies such as:

  • Removing the N oldest messages
  • Summarizing older context
  • Applying importance-based filtering
  • Maintaining critical conversation markers

Parameters:

Name Type Description Default
agent Agent

The agent whose conversation history will be reduced. This list is modified in-place.

required
e Optional[Exception]

The exception that triggered the context reduction, if any.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/agent/conversation_manager/conversation_manager.py
@abstractmethod
def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
    """Called when the model's context window is exceeded.

    This method should implement the specific strategy for reducing the window size when a context overflow occurs.
    It is typically called after a ContextWindowOverflowException is caught.

    Implementations might use strategies such as:

    - Removing the N oldest messages
    - Summarizing older context
    - Applying importance-based filtering
    - Maintaining critical conversation markers

    Args:
        agent: The agent whose conversation history will be reduced.
            This list is modified in-place.
        e: The exception that triggered the context reduction, if any.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    pass
restore_from_session(state)

Restore the Conversation Manager's state from a session.

Parameters:

Name Type Description Default
state dict[str, Any]

Previous state of the conversation manager

required
Source code in strands/agent/conversation_manager/conversation_manager.py
def restore_from_session(self, state: dict[str, Any]) -> Optional[list[Message]]:
    """Restore the Conversation Manager's state from a session.

    Args:
        state: Previous state of the conversation manager
    Returns:
        Optional list of messages to prepend to the agents messages. By default returns None.
    """
    if state.get("__name__") != self.__class__.__name__:
        raise ValueError("Invalid conversation manager state.")
    self.removed_message_count = state["removed_message_count"]
    return None

strands.agent.conversation_manager.null_conversation_manager

Null implementation of conversation management.

NullConversationManager

Bases: ConversationManager

A no-op conversation manager that does not modify the conversation history.

Useful for:

  • Testing scenarios where conversation management should be disabled
  • Cases where conversation history is managed externally
  • Situations where the full conversation history should be preserved
Source code in strands/agent/conversation_manager/null_conversation_manager.py
class NullConversationManager(ConversationManager):
    """A no-op conversation manager that does not modify the conversation history.

    Useful for:

    - Testing scenarios where conversation management should be disabled
    - Cases where conversation history is managed externally
    - Situations where the full conversation history should be preserved
    """

    def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
        """Does nothing to the conversation history.

        Args:
            agent: The agent whose conversation history will remain unmodified.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        pass

    def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
        """Does not reduce context and raises an exception.

        Args:
            agent: The agent whose conversation history will remain unmodified.
            e: The exception that triggered the context reduction, if any.
            **kwargs: Additional keyword arguments for future extensibility.

        Raises:
            e: If provided.
            ContextWindowOverflowException: If e is None.
        """
        if e:
            raise e
        else:
            raise ContextWindowOverflowException("Context window overflowed!")
apply_management(agent, **kwargs)

Does nothing to the conversation history.

Parameters:

Name Type Description Default
agent Agent

The agent whose conversation history will remain unmodified.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/agent/conversation_manager/null_conversation_manager.py
def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
    """Does nothing to the conversation history.

    Args:
        agent: The agent whose conversation history will remain unmodified.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    pass
reduce_context(agent, e=None, **kwargs)

Does not reduce context and raises an exception.

Parameters:

Name Type Description Default
agent Agent

The agent whose conversation history will remain unmodified.

required
e Optional[Exception]

The exception that triggered the context reduction, if any.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Raises:

Type Description
e

If provided.

ContextWindowOverflowException

If e is None.

Source code in strands/agent/conversation_manager/null_conversation_manager.py
def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
    """Does not reduce context and raises an exception.

    Args:
        agent: The agent whose conversation history will remain unmodified.
        e: The exception that triggered the context reduction, if any.
        **kwargs: Additional keyword arguments for future extensibility.

    Raises:
        e: If provided.
        ContextWindowOverflowException: If e is None.
    """
    if e:
        raise e
    else:
        raise ContextWindowOverflowException("Context window overflowed!")

strands.agent.conversation_manager.sliding_window_conversation_manager

Sliding window conversation history management.

SlidingWindowConversationManager

Bases: ConversationManager

Implements a sliding window strategy for managing conversation history.

This class handles the logic of maintaining a conversation window that preserves tool usage pairs and avoids invalid window states.

Source code in strands/agent/conversation_manager/sliding_window_conversation_manager.py
class SlidingWindowConversationManager(ConversationManager):
    """Implements a sliding window strategy for managing conversation history.

    This class handles the logic of maintaining a conversation window that preserves tool usage pairs and avoids
    invalid window states.
    """

    def __init__(self, window_size: int = 40, should_truncate_results: bool = True):
        """Initialize the sliding window conversation manager.

        Args:
            window_size: Maximum number of messages to keep in the agent's history.
                Defaults to 40 messages.
            should_truncate_results: Truncate tool results when a message is too large for the model's context window
        """
        super().__init__()
        self.window_size = window_size
        self.should_truncate_results = should_truncate_results

    def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
        """Apply the sliding window to the agent's messages array to maintain a manageable history size.

        This method is called after every event loop cycle to apply a sliding window if the message count
        exceeds the window size.

        Args:
            agent: The agent whose messages will be managed.
                This list is modified in-place.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        messages = agent.messages

        if len(messages) <= self.window_size:
            logger.debug(
                "message_count=<%s>, window_size=<%s> | skipping context reduction", len(messages), self.window_size
            )
            return
        self.reduce_context(agent)

    def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
        """Trim the oldest messages to reduce the conversation context size.

        The method handles special cases where trimming the messages leads to:
         - toolResult with no corresponding toolUse
         - toolUse with no corresponding toolResult

        Args:
            agent: The agent whose messages will be reduce.
                This list is modified in-place.
            e: The exception that triggered the context reduction, if any.
            **kwargs: Additional keyword arguments for future extensibility.

        Raises:
            ContextWindowOverflowException: If the context cannot be reduced further.
                Such as when the conversation is already minimal or when tool result messages cannot be properly
                converted.
        """
        messages = agent.messages

        # Try to truncate the tool result first
        last_message_idx_with_tool_results = self._find_last_message_with_tool_results(messages)
        if last_message_idx_with_tool_results is not None and self.should_truncate_results:
            logger.debug(
                "message_index=<%s> | found message with tool results at index", last_message_idx_with_tool_results
            )
            results_truncated = self._truncate_tool_results(messages, last_message_idx_with_tool_results)
            if results_truncated:
                logger.debug("message_index=<%s> | tool results truncated", last_message_idx_with_tool_results)
                return

        # Try to trim index id when tool result cannot be truncated anymore
        # If the number of messages is less than the window_size, then we default to 2, otherwise, trim to window size
        trim_index = 2 if len(messages) <= self.window_size else len(messages) - self.window_size

        # Find the next valid trim_index
        while trim_index < len(messages):
            if (
                # Oldest message cannot be a toolResult because it needs a toolUse preceding it
                any("toolResult" in content for content in messages[trim_index]["content"])
                or (
                    # Oldest message can be a toolUse only if a toolResult immediately follows it.
                    any("toolUse" in content for content in messages[trim_index]["content"])
                    and trim_index + 1 < len(messages)
                    and not any("toolResult" in content for content in messages[trim_index + 1]["content"])
                )
            ):
                trim_index += 1
            else:
                break
        else:
            # If we didn't find a valid trim_index, then we throw
            raise ContextWindowOverflowException("Unable to trim conversation context!") from e

        # trim_index represents the number of messages being removed from the agents messages array
        self.removed_message_count += trim_index

        # Overwrite message history
        messages[:] = messages[trim_index:]

    def _truncate_tool_results(self, messages: Messages, msg_idx: int) -> bool:
        """Truncate tool results in a message to reduce context size.

        When a message contains tool results that are too large for the model's context window, this function
        replaces the content of those tool results with a simple error message.

        Args:
            messages: The conversation message history.
            msg_idx: Index of the message containing tool results to truncate.

        Returns:
            True if any changes were made to the message, False otherwise.
        """
        if msg_idx >= len(messages) or msg_idx < 0:
            return False

        message = messages[msg_idx]
        changes_made = False
        tool_result_too_large_message = "The tool result was too large!"
        for i, content in enumerate(message.get("content", [])):
            if isinstance(content, dict) and "toolResult" in content:
                tool_result_content_text = next(
                    (item["text"] for item in content["toolResult"]["content"] if "text" in item),
                    "",
                )
                # make the overwriting logic togglable
                if (
                    message["content"][i]["toolResult"]["status"] == "error"
                    and tool_result_content_text == tool_result_too_large_message
                ):
                    logger.info("ToolResult has already been updated, skipping overwrite")
                    return False
                # Update status to error with informative message
                message["content"][i]["toolResult"]["status"] = "error"
                message["content"][i]["toolResult"]["content"] = [{"text": tool_result_too_large_message}]
                changes_made = True

        return changes_made

    def _find_last_message_with_tool_results(self, messages: Messages) -> Optional[int]:
        """Find the index of the last message containing tool results.

        This is useful for identifying messages that might need to be truncated to reduce context size.

        Args:
            messages: The conversation message history.

        Returns:
            Index of the last message with tool results, or None if no such message exists.
        """
        # Iterate backwards through all messages (from newest to oldest)
        for idx in range(len(messages) - 1, -1, -1):
            # Check if this message has any content with toolResult
            current_message = messages[idx]
            has_tool_result = False

            for content in current_message.get("content", []):
                if isinstance(content, dict) and "toolResult" in content:
                    has_tool_result = True
                    break

            if has_tool_result:
                return idx

        return None
__init__(window_size=40, should_truncate_results=True)

Initialize the sliding window conversation manager.

Parameters:

Name Type Description Default
window_size int

Maximum number of messages to keep in the agent's history. Defaults to 40 messages.

40
should_truncate_results bool

Truncate tool results when a message is too large for the model's context window

True
Source code in strands/agent/conversation_manager/sliding_window_conversation_manager.py
def __init__(self, window_size: int = 40, should_truncate_results: bool = True):
    """Initialize the sliding window conversation manager.

    Args:
        window_size: Maximum number of messages to keep in the agent's history.
            Defaults to 40 messages.
        should_truncate_results: Truncate tool results when a message is too large for the model's context window
    """
    super().__init__()
    self.window_size = window_size
    self.should_truncate_results = should_truncate_results
apply_management(agent, **kwargs)

Apply the sliding window to the agent's messages array to maintain a manageable history size.

This method is called after every event loop cycle to apply a sliding window if the message count exceeds the window size.

Parameters:

Name Type Description Default
agent Agent

The agent whose messages will be managed. This list is modified in-place.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/agent/conversation_manager/sliding_window_conversation_manager.py
def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
    """Apply the sliding window to the agent's messages array to maintain a manageable history size.

    This method is called after every event loop cycle to apply a sliding window if the message count
    exceeds the window size.

    Args:
        agent: The agent whose messages will be managed.
            This list is modified in-place.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    messages = agent.messages

    if len(messages) <= self.window_size:
        logger.debug(
            "message_count=<%s>, window_size=<%s> | skipping context reduction", len(messages), self.window_size
        )
        return
    self.reduce_context(agent)
reduce_context(agent, e=None, **kwargs)

Trim the oldest messages to reduce the conversation context size.

The method handles special cases where trimming the messages leads to
  • toolResult with no corresponding toolUse
  • toolUse with no corresponding toolResult

Parameters:

Name Type Description Default
agent Agent

The agent whose messages will be reduce. This list is modified in-place.

required
e Optional[Exception]

The exception that triggered the context reduction, if any.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Raises:

Type Description
ContextWindowOverflowException

If the context cannot be reduced further. Such as when the conversation is already minimal or when tool result messages cannot be properly converted.

Source code in strands/agent/conversation_manager/sliding_window_conversation_manager.py
def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
    """Trim the oldest messages to reduce the conversation context size.

    The method handles special cases where trimming the messages leads to:
     - toolResult with no corresponding toolUse
     - toolUse with no corresponding toolResult

    Args:
        agent: The agent whose messages will be reduce.
            This list is modified in-place.
        e: The exception that triggered the context reduction, if any.
        **kwargs: Additional keyword arguments for future extensibility.

    Raises:
        ContextWindowOverflowException: If the context cannot be reduced further.
            Such as when the conversation is already minimal or when tool result messages cannot be properly
            converted.
    """
    messages = agent.messages

    # Try to truncate the tool result first
    last_message_idx_with_tool_results = self._find_last_message_with_tool_results(messages)
    if last_message_idx_with_tool_results is not None and self.should_truncate_results:
        logger.debug(
            "message_index=<%s> | found message with tool results at index", last_message_idx_with_tool_results
        )
        results_truncated = self._truncate_tool_results(messages, last_message_idx_with_tool_results)
        if results_truncated:
            logger.debug("message_index=<%s> | tool results truncated", last_message_idx_with_tool_results)
            return

    # Try to trim index id when tool result cannot be truncated anymore
    # If the number of messages is less than the window_size, then we default to 2, otherwise, trim to window size
    trim_index = 2 if len(messages) <= self.window_size else len(messages) - self.window_size

    # Find the next valid trim_index
    while trim_index < len(messages):
        if (
            # Oldest message cannot be a toolResult because it needs a toolUse preceding it
            any("toolResult" in content for content in messages[trim_index]["content"])
            or (
                # Oldest message can be a toolUse only if a toolResult immediately follows it.
                any("toolUse" in content for content in messages[trim_index]["content"])
                and trim_index + 1 < len(messages)
                and not any("toolResult" in content for content in messages[trim_index + 1]["content"])
            )
        ):
            trim_index += 1
        else:
            break
    else:
        # If we didn't find a valid trim_index, then we throw
        raise ContextWindowOverflowException("Unable to trim conversation context!") from e

    # trim_index represents the number of messages being removed from the agents messages array
    self.removed_message_count += trim_index

    # Overwrite message history
    messages[:] = messages[trim_index:]

strands.agent.conversation_manager.summarizing_conversation_manager

Summarizing conversation history management with configurable options.

SummarizingConversationManager

Bases: ConversationManager

Implements a summarizing window manager.

This manager provides a configurable option to summarize older context instead of simply trimming it, helping preserve important information while staying within context limits.

Source code in strands/agent/conversation_manager/summarizing_conversation_manager.py
class SummarizingConversationManager(ConversationManager):
    """Implements a summarizing window manager.

    This manager provides a configurable option to summarize older context instead of
    simply trimming it, helping preserve important information while staying within
    context limits.
    """

    def __init__(
        self,
        summary_ratio: float = 0.3,
        preserve_recent_messages: int = 10,
        summarization_agent: Optional["Agent"] = None,
        summarization_system_prompt: Optional[str] = None,
    ):
        """Initialize the summarizing conversation manager.

        Args:
            summary_ratio: Ratio of messages to summarize vs keep when context overflow occurs.
                Value between 0.1 and 0.8. Defaults to 0.3 (summarize 30% of oldest messages).
            preserve_recent_messages: Minimum number of recent messages to always keep.
                Defaults to 10 messages.
            summarization_agent: Optional agent to use for summarization instead of the parent agent.
                If provided, this agent can use tools as part of the summarization process.
            summarization_system_prompt: Optional system prompt override for summarization.
                If None, uses the default summarization prompt.
        """
        super().__init__()
        if summarization_agent is not None and summarization_system_prompt is not None:
            raise ValueError(
                "Cannot provide both summarization_agent and summarization_system_prompt. "
                "Agents come with their own system prompt."
            )

        self.summary_ratio = max(0.1, min(0.8, summary_ratio))
        self.preserve_recent_messages = preserve_recent_messages
        self.summarization_agent = summarization_agent
        self.summarization_system_prompt = summarization_system_prompt
        self._summary_message: Optional[Message] = None

    @override
    def restore_from_session(self, state: dict[str, Any]) -> Optional[list[Message]]:
        """Restores the Summarizing Conversation manager from its previous state in a session.

        Args:
            state: The previous state of the Summarizing Conversation Manager.

        Returns:
            Optionally returns the previous conversation summary if it exists.
        """
        super().restore_from_session(state)
        self._summary_message = state.get("summary_message")
        return [self._summary_message] if self._summary_message else None

    def get_state(self) -> dict[str, Any]:
        """Returns a dictionary representation of the state for the Summarizing Conversation Manager."""
        return {"summary_message": self._summary_message, **super().get_state()}

    def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
        """Apply management strategy to conversation history.

        For the summarizing conversation manager, no proactive management is performed.
        Summarization only occurs when there's a context overflow that triggers reduce_context.

        Args:
            agent: The agent whose conversation history will be managed.
                The agent's messages list is modified in-place.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        # No proactive management - summarization only happens on context overflow
        pass

    def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
        """Reduce context using summarization.

        Args:
            agent: The agent whose conversation history will be reduced.
                The agent's messages list is modified in-place.
            e: The exception that triggered the context reduction, if any.
            **kwargs: Additional keyword arguments for future extensibility.

        Raises:
            ContextWindowOverflowException: If the context cannot be summarized.
        """
        try:
            # Calculate how many messages to summarize
            messages_to_summarize_count = max(1, int(len(agent.messages) * self.summary_ratio))

            # Ensure we don't summarize recent messages
            messages_to_summarize_count = min(
                messages_to_summarize_count, len(agent.messages) - self.preserve_recent_messages
            )

            if messages_to_summarize_count <= 0:
                raise ContextWindowOverflowException("Cannot summarize: insufficient messages for summarization")

            # Adjust split point to avoid breaking ToolUse/ToolResult pairs
            messages_to_summarize_count = self._adjust_split_point_for_tool_pairs(
                agent.messages, messages_to_summarize_count
            )

            if messages_to_summarize_count <= 0:
                raise ContextWindowOverflowException("Cannot summarize: insufficient messages for summarization")

            # Extract messages to summarize
            messages_to_summarize = agent.messages[:messages_to_summarize_count]
            remaining_messages = agent.messages[messages_to_summarize_count:]

            # Keep track of the number of messages that have been summarized thus far.
            self.removed_message_count += len(messages_to_summarize)
            # If there is a summary message, don't count it in the removed_message_count.
            if self._summary_message:
                self.removed_message_count -= 1

            # Generate summary
            self._summary_message = self._generate_summary(messages_to_summarize, agent)

            # Replace the summarized messages with the summary
            agent.messages[:] = [self._summary_message] + remaining_messages

        except Exception as summarization_error:
            logger.error("Summarization failed: %s", summarization_error)
            raise summarization_error from e

    def _generate_summary(self, messages: List[Message], agent: "Agent") -> Message:
        """Generate a summary of the provided messages.

        Args:
            messages: The messages to summarize.
            agent: The agent instance to use for summarization.

        Returns:
            A message containing the conversation summary.

        Raises:
            Exception: If summary generation fails.
        """
        # Choose which agent to use for summarization
        summarization_agent = self.summarization_agent if self.summarization_agent is not None else agent

        # Save original system prompt, messages, and tool registry to restore later
        original_system_prompt = summarization_agent.system_prompt
        original_messages = summarization_agent.messages.copy()
        original_tool_registry = summarization_agent.tool_registry

        try:
            # Only override system prompt if no agent was provided during initialization
            if self.summarization_agent is None:
                # Use custom system prompt if provided, otherwise use default
                system_prompt = (
                    self.summarization_system_prompt
                    if self.summarization_system_prompt is not None
                    else DEFAULT_SUMMARIZATION_PROMPT
                )
                # Temporarily set the system prompt for summarization
                summarization_agent.system_prompt = system_prompt

            # Add no-op tool if agent has no tools to satisfy tool spec requirement
            if not summarization_agent.tool_names:
                tool_registry = ToolRegistry()
                tool_registry.register_tool(cast(AgentTool, noop_tool))
                summarization_agent.tool_registry = tool_registry

            summarization_agent.messages = messages

            # Use the agent to generate summary with rich content (can use tools if needed)
            result = summarization_agent("Please summarize this conversation.")
            return cast(Message, {**result.message, "role": "user"})

        finally:
            # Restore original agent state
            summarization_agent.system_prompt = original_system_prompt
            summarization_agent.messages = original_messages
            summarization_agent.tool_registry = original_tool_registry

    def _adjust_split_point_for_tool_pairs(self, messages: List[Message], split_point: int) -> int:
        """Adjust the split point to avoid breaking ToolUse/ToolResult pairs.

        Uses the same logic as SlidingWindowConversationManager for consistency.

        Args:
            messages: The full list of messages.
            split_point: The initially calculated split point.

        Returns:
            The adjusted split point that doesn't break ToolUse/ToolResult pairs.

        Raises:
            ContextWindowOverflowException: If no valid split point can be found.
        """
        if split_point > len(messages):
            raise ContextWindowOverflowException("Split point exceeds message array length")

        if split_point == len(messages):
            return split_point

        # Find the next valid split_point
        while split_point < len(messages):
            if (
                # Oldest message cannot be a toolResult because it needs a toolUse preceding it
                any("toolResult" in content for content in messages[split_point]["content"])
                or (
                    # Oldest message can be a toolUse only if a toolResult immediately follows it.
                    any("toolUse" in content for content in messages[split_point]["content"])
                    and split_point + 1 < len(messages)
                    and not any("toolResult" in content for content in messages[split_point + 1]["content"])
                )
            ):
                split_point += 1
            else:
                break
        else:
            # If we didn't find a valid split_point, then we throw
            raise ContextWindowOverflowException("Unable to trim conversation context!")

        return split_point
__init__(summary_ratio=0.3, preserve_recent_messages=10, summarization_agent=None, summarization_system_prompt=None)

Initialize the summarizing conversation manager.

Parameters:

Name Type Description Default
summary_ratio float

Ratio of messages to summarize vs keep when context overflow occurs. Value between 0.1 and 0.8. Defaults to 0.3 (summarize 30% of oldest messages).

0.3
preserve_recent_messages int

Minimum number of recent messages to always keep. Defaults to 10 messages.

10
summarization_agent Optional[Agent]

Optional agent to use for summarization instead of the parent agent. If provided, this agent can use tools as part of the summarization process.

None
summarization_system_prompt Optional[str]

Optional system prompt override for summarization. If None, uses the default summarization prompt.

None
Source code in strands/agent/conversation_manager/summarizing_conversation_manager.py
def __init__(
    self,
    summary_ratio: float = 0.3,
    preserve_recent_messages: int = 10,
    summarization_agent: Optional["Agent"] = None,
    summarization_system_prompt: Optional[str] = None,
):
    """Initialize the summarizing conversation manager.

    Args:
        summary_ratio: Ratio of messages to summarize vs keep when context overflow occurs.
            Value between 0.1 and 0.8. Defaults to 0.3 (summarize 30% of oldest messages).
        preserve_recent_messages: Minimum number of recent messages to always keep.
            Defaults to 10 messages.
        summarization_agent: Optional agent to use for summarization instead of the parent agent.
            If provided, this agent can use tools as part of the summarization process.
        summarization_system_prompt: Optional system prompt override for summarization.
            If None, uses the default summarization prompt.
    """
    super().__init__()
    if summarization_agent is not None and summarization_system_prompt is not None:
        raise ValueError(
            "Cannot provide both summarization_agent and summarization_system_prompt. "
            "Agents come with their own system prompt."
        )

    self.summary_ratio = max(0.1, min(0.8, summary_ratio))
    self.preserve_recent_messages = preserve_recent_messages
    self.summarization_agent = summarization_agent
    self.summarization_system_prompt = summarization_system_prompt
    self._summary_message: Optional[Message] = None
apply_management(agent, **kwargs)

Apply management strategy to conversation history.

For the summarizing conversation manager, no proactive management is performed. Summarization only occurs when there's a context overflow that triggers reduce_context.

Parameters:

Name Type Description Default
agent Agent

The agent whose conversation history will be managed. The agent's messages list is modified in-place.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/agent/conversation_manager/summarizing_conversation_manager.py
def apply_management(self, agent: "Agent", **kwargs: Any) -> None:
    """Apply management strategy to conversation history.

    For the summarizing conversation manager, no proactive management is performed.
    Summarization only occurs when there's a context overflow that triggers reduce_context.

    Args:
        agent: The agent whose conversation history will be managed.
            The agent's messages list is modified in-place.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    # No proactive management - summarization only happens on context overflow
    pass
get_state()

Returns a dictionary representation of the state for the Summarizing Conversation Manager.

Source code in strands/agent/conversation_manager/summarizing_conversation_manager.py
def get_state(self) -> dict[str, Any]:
    """Returns a dictionary representation of the state for the Summarizing Conversation Manager."""
    return {"summary_message": self._summary_message, **super().get_state()}
reduce_context(agent, e=None, **kwargs)

Reduce context using summarization.

Parameters:

Name Type Description Default
agent Agent

The agent whose conversation history will be reduced. The agent's messages list is modified in-place.

required
e Optional[Exception]

The exception that triggered the context reduction, if any.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Raises:

Type Description
ContextWindowOverflowException

If the context cannot be summarized.

Source code in strands/agent/conversation_manager/summarizing_conversation_manager.py
def reduce_context(self, agent: "Agent", e: Optional[Exception] = None, **kwargs: Any) -> None:
    """Reduce context using summarization.

    Args:
        agent: The agent whose conversation history will be reduced.
            The agent's messages list is modified in-place.
        e: The exception that triggered the context reduction, if any.
        **kwargs: Additional keyword arguments for future extensibility.

    Raises:
        ContextWindowOverflowException: If the context cannot be summarized.
    """
    try:
        # Calculate how many messages to summarize
        messages_to_summarize_count = max(1, int(len(agent.messages) * self.summary_ratio))

        # Ensure we don't summarize recent messages
        messages_to_summarize_count = min(
            messages_to_summarize_count, len(agent.messages) - self.preserve_recent_messages
        )

        if messages_to_summarize_count <= 0:
            raise ContextWindowOverflowException("Cannot summarize: insufficient messages for summarization")

        # Adjust split point to avoid breaking ToolUse/ToolResult pairs
        messages_to_summarize_count = self._adjust_split_point_for_tool_pairs(
            agent.messages, messages_to_summarize_count
        )

        if messages_to_summarize_count <= 0:
            raise ContextWindowOverflowException("Cannot summarize: insufficient messages for summarization")

        # Extract messages to summarize
        messages_to_summarize = agent.messages[:messages_to_summarize_count]
        remaining_messages = agent.messages[messages_to_summarize_count:]

        # Keep track of the number of messages that have been summarized thus far.
        self.removed_message_count += len(messages_to_summarize)
        # If there is a summary message, don't count it in the removed_message_count.
        if self._summary_message:
            self.removed_message_count -= 1

        # Generate summary
        self._summary_message = self._generate_summary(messages_to_summarize, agent)

        # Replace the summarized messages with the summary
        agent.messages[:] = [self._summary_message] + remaining_messages

    except Exception as summarization_error:
        logger.error("Summarization failed: %s", summarization_error)
        raise summarization_error from e
restore_from_session(state)

Restores the Summarizing Conversation manager from its previous state in a session.

Parameters:

Name Type Description Default
state dict[str, Any]

The previous state of the Summarizing Conversation Manager.

required

Returns:

Type Description
Optional[list[Message]]

Optionally returns the previous conversation summary if it exists.

Source code in strands/agent/conversation_manager/summarizing_conversation_manager.py
@override
def restore_from_session(self, state: dict[str, Any]) -> Optional[list[Message]]:
    """Restores the Summarizing Conversation manager from its previous state in a session.

    Args:
        state: The previous state of the Summarizing Conversation Manager.

    Returns:
        Optionally returns the previous conversation summary if it exists.
    """
    super().restore_from_session(state)
    self._summary_message = state.get("summary_message")
    return [self._summary_message] if self._summary_message else None

strands.agent.state

Agent state management.

AgentState

Represents an Agent's stateful information outside of context provided to a model.

Provides a key-value store for agent state with JSON serialization validation and persistence support. Key features: - JSON serialization validation on assignment - Get/set/delete operations

Source code in strands/agent/state.py
class AgentState:
    """Represents an Agent's stateful information outside of context provided to a model.

    Provides a key-value store for agent state with JSON serialization validation and persistence support.
    Key features:
    - JSON serialization validation on assignment
    - Get/set/delete operations
    """

    def __init__(self, initial_state: Optional[Dict[str, Any]] = None):
        """Initialize AgentState."""
        self._state: Dict[str, Dict[str, Any]]
        if initial_state:
            self._validate_json_serializable(initial_state)
            self._state = copy.deepcopy(initial_state)
        else:
            self._state = {}

    def set(self, key: str, value: Any) -> None:
        """Set a value in the state.

        Args:
            key: The key to store the value under
            value: The value to store (must be JSON serializable)

        Raises:
            ValueError: If key is invalid, or if value is not JSON serializable
        """
        self._validate_key(key)
        self._validate_json_serializable(value)

        self._state[key] = copy.deepcopy(value)

    def get(self, key: Optional[str] = None) -> Any:
        """Get a value or entire state.

        Args:
            key: The key to retrieve (if None, returns entire state object)

        Returns:
            The stored value, entire state dict, or None if not found
        """
        if key is None:
            return copy.deepcopy(self._state)
        else:
            # Return specific key
            return copy.deepcopy(self._state.get(key))

    def delete(self, key: str) -> None:
        """Delete a specific key from the state.

        Args:
            key: The key to delete
        """
        self._validate_key(key)

        self._state.pop(key, None)

    def _validate_key(self, key: str) -> None:
        """Validate that a key is valid.

        Args:
            key: The key to validate

        Raises:
            ValueError: If key is invalid
        """
        if key is None:
            raise ValueError("Key cannot be None")
        if not isinstance(key, str):
            raise ValueError("Key must be a string")
        if not key.strip():
            raise ValueError("Key cannot be empty")

    def _validate_json_serializable(self, value: Any) -> None:
        """Validate that a value is JSON serializable.

        Args:
            value: The value to validate

        Raises:
            ValueError: If value is not JSON serializable
        """
        try:
            json.dumps(value)
        except (TypeError, ValueError) as e:
            raise ValueError(
                f"Value is not JSON serializable: {type(value).__name__}. "
                f"Only JSON-compatible types (str, int, float, bool, list, dict, None) are allowed."
            ) from e

__init__(initial_state=None)

Initialize AgentState.

Source code in strands/agent/state.py
def __init__(self, initial_state: Optional[Dict[str, Any]] = None):
    """Initialize AgentState."""
    self._state: Dict[str, Dict[str, Any]]
    if initial_state:
        self._validate_json_serializable(initial_state)
        self._state = copy.deepcopy(initial_state)
    else:
        self._state = {}

delete(key)

Delete a specific key from the state.

Parameters:

Name Type Description Default
key str

The key to delete

required
Source code in strands/agent/state.py
def delete(self, key: str) -> None:
    """Delete a specific key from the state.

    Args:
        key: The key to delete
    """
    self._validate_key(key)

    self._state.pop(key, None)

get(key=None)

Get a value or entire state.

Parameters:

Name Type Description Default
key Optional[str]

The key to retrieve (if None, returns entire state object)

None

Returns:

Type Description
Any

The stored value, entire state dict, or None if not found

Source code in strands/agent/state.py
def get(self, key: Optional[str] = None) -> Any:
    """Get a value or entire state.

    Args:
        key: The key to retrieve (if None, returns entire state object)

    Returns:
        The stored value, entire state dict, or None if not found
    """
    if key is None:
        return copy.deepcopy(self._state)
    else:
        # Return specific key
        return copy.deepcopy(self._state.get(key))

set(key, value)

Set a value in the state.

Parameters:

Name Type Description Default
key str

The key to store the value under

required
value Any

The value to store (must be JSON serializable)

required

Raises:

Type Description
ValueError

If key is invalid, or if value is not JSON serializable

Source code in strands/agent/state.py
def set(self, key: str, value: Any) -> None:
    """Set a value in the state.

    Args:
        key: The key to store the value under
        value: The value to store (must be JSON serializable)

    Raises:
        ValueError: If key is invalid, or if value is not JSON serializable
    """
    self._validate_key(key)
    self._validate_json_serializable(value)

    self._state[key] = copy.deepcopy(value)