strands.experimental.steering.handlers.llm.llm_handler
¶
LLM-based steering handler that uses an LLM to provide contextual guidance.
SteeringAction = Annotated[Proceed | Guide | Interrupt, Field(discriminator='type')]
module-attribute
¶
logger = logging.getLogger(__name__)
module-attribute
¶
Agent
¶
Core Agent interface.
An agent orchestrates the following workflow:
- Receives user input
- Processes the input using a language model
- Decides whether to use tools to gather information or perform actions
- Executes those tools and receives results
- Continues reasoning with the new information
- Produces a final response
Source code in strands/agent/agent.py
89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 | |
system_prompt
property
writable
¶
Get the system prompt as a string for backwards compatibility.
Returns the system prompt as a concatenated string when it contains text content, or None if no text content is present. This maintains backwards compatibility with existing code that expects system_prompt to be a string.
Returns:
| Type | Description |
|---|---|
str | None
|
The system prompt as a string, or None if no text content exists. |
tool
property
¶
Call tool as a function.
Returns:
| Type | Description |
|---|---|
_ToolCaller
|
Tool caller through which user can invoke tool as a function. |
Example
agent = Agent(tools=[calculator])
agent.tool.calculator(...)
tool_names
property
¶
Get a list of all registered tool names.
Returns:
| Type | Description |
|---|---|
list[str]
|
Names of all tools available to this agent. |
__call__(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)
¶
Process a natural language prompt through the agent's event loop.
This method implements the conversational interface with multiple input patterns:
- String input: agent("hello!")
- ContentBlock list: agent([{"text": "hello"}, {"image": {...}}])
- Message list: agent([{"role": "user", "content": [{"text": "hello"}]}])
- No input: agent() - uses existing conversation history
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
AgentInput
|
User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history |
None
|
invocation_state
|
dict[str, Any] | None
|
Additional parameters to pass through the event loop. |
None
|
structured_output_model
|
Type[BaseModel] | None
|
Pydantic model type(s) for structured output (overrides agent default). |
None
|
**kwargs
|
Any
|
Additional parameters to pass through the event loop.[Deprecating] |
{}
|
Returns:
| Type | Description |
|---|---|
AgentResult
|
Result object containing:
|
Source code in strands/agent/agent.py
317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 | |
__del__()
¶
Clean up resources when agent is garbage collected.
Source code in strands/agent/agent.py
514 515 516 517 518 519 | |
__init__(model=None, messages=None, tools=None, system_prompt=None, structured_output_model=None, callback_handler=_DEFAULT_CALLBACK_HANDLER, conversation_manager=None, record_direct_tool_call=True, load_tools_from_directory=False, trace_attributes=None, *, agent_id=None, name=None, description=None, state=None, hooks=None, session_manager=None, tool_executor=None)
¶
Initialize the Agent with the specified configuration.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
model
|
Union[Model, str, None]
|
Provider for running inference or a string representing the model-id for Bedrock to use. Defaults to strands.models.BedrockModel if None. |
None
|
messages
|
Optional[Messages]
|
List of initial messages to pre-load into the conversation. Defaults to an empty list if None. |
None
|
tools
|
Optional[list[Union[str, dict[str, str], ToolProvider, Any]]]
|
List of tools to make available to the agent. Can be specified as:
If provided, only these tools will be available. If None, all tools will be available. |
None
|
system_prompt
|
Optional[str | list[SystemContentBlock]]
|
System prompt to guide model behavior. Can be a string or a list of SystemContentBlock objects for advanced features like caching. If None, the model will behave according to its default settings. |
None
|
structured_output_model
|
Optional[Type[BaseModel]]
|
Pydantic model type(s) for structured output. When specified, all agent calls will attempt to return structured output of this type. This can be overridden on the agent invocation. Defaults to None (no structured output). |
None
|
callback_handler
|
Optional[Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]]
|
Callback for processing events as they happen during agent execution. If not provided (using the default), a new PrintingCallbackHandler instance is created. If explicitly set to None, null_callback_handler is used. |
_DEFAULT_CALLBACK_HANDLER
|
conversation_manager
|
Optional[ConversationManager]
|
Manager for conversation history and context window. Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None. |
None
|
record_direct_tool_call
|
bool
|
Whether to record direct tool calls in message history. Defaults to True. |
True
|
load_tools_from_directory
|
bool
|
Whether to load and automatically reload tools in the |
False
|
trace_attributes
|
Optional[Mapping[str, AttributeValue]]
|
Custom trace attributes to apply to the agent's trace span. |
None
|
agent_id
|
Optional[str]
|
Optional ID for the agent, useful for session management and multi-agent scenarios. Defaults to "default". |
None
|
name
|
Optional[str]
|
name of the Agent Defaults to "Strands Agents". |
None
|
description
|
Optional[str]
|
description of what the Agent does Defaults to None. |
None
|
state
|
Optional[Union[AgentState, dict]]
|
stateful information for the agent. Can be either an AgentState object, or a json serializable dict. Defaults to an empty AgentState object. |
None
|
hooks
|
Optional[list[HookProvider]]
|
hooks to be added to the agent hook registry Defaults to None. |
None
|
session_manager
|
Optional[SessionManager]
|
Manager for handling agent sessions including conversation history and state. If provided, enables session-based persistence and state management. |
None
|
tool_executor
|
Optional[ToolExecutor]
|
Definition of tool execution strategy (e.g., sequential, concurrent, etc.). |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If agent id contains path separators. |
Source code in strands/agent/agent.py
105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | |
cleanup()
¶
Clean up resources used by the agent.
This method cleans up all tool providers that require explicit cleanup, such as MCP clients. It should be called when the agent is no longer needed to ensure proper resource cleanup.
Note: This method uses a "belt and braces" approach with automatic cleanup through finalizers as a fallback, but explicit cleanup is recommended.
Source code in strands/agent/agent.py
502 503 504 505 506 507 508 509 510 511 512 | |
invoke_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)
async
¶
Process a natural language prompt through the agent's event loop.
This method implements the conversational interface with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
AgentInput
|
User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history |
None
|
invocation_state
|
dict[str, Any] | None
|
Additional parameters to pass through the event loop. |
None
|
structured_output_model
|
Type[BaseModel] | None
|
Pydantic model type(s) for structured output (overrides agent default). |
None
|
**kwargs
|
Any
|
Additional parameters to pass through the event loop.[Deprecating] |
{}
|
Returns:
| Name | Type | Description |
|---|---|---|
Result |
AgentResult
|
object containing:
|
Source code in strands/agent/agent.py
358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 | |
stream_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)
async
¶
Process a natural language prompt and yield events as an async iterator.
This method provides an asynchronous interface for streaming agent events with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
prompt
|
AgentInput
|
User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history |
None
|
invocation_state
|
dict[str, Any] | None
|
Additional parameters to pass through the event loop. |
None
|
structured_output_model
|
Type[BaseModel] | None
|
Pydantic model type(s) for structured output (overrides agent default). |
None
|
**kwargs
|
Any
|
Additional parameters to pass to the event loop.[Deprecating] |
{}
|
Yields:
| Type | Description |
|---|---|
AsyncIterator[Any]
|
An async iterator that yields events. Each event is a dictionary containing information about the current state of processing, such as:
|
Raises:
| Type | Description |
|---|---|
Exception
|
Any exceptions from the agent invocation will be propagated to the caller. |
Example
async for event in agent.stream_async("Analyze this data"):
if "data" in event:
yield event["data"]
Source code in strands/agent/agent.py
521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 | |
structured_output(output_model, prompt=None)
¶
This method allows you to get structured output from the agent.
If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.
For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_model
|
Type[T]
|
The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding. |
required |
prompt
|
AgentInput
|
The prompt to use for the agent in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If no conversation history or prompt is provided. |
Source code in strands/agent/agent.py
400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 | |
structured_output_async(output_model, prompt=None)
async
¶
This method allows you to get structured output from the agent.
If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.
For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_model
|
Type[T]
|
The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding. |
required |
prompt
|
AgentInput
|
The prompt to use for the agent (will not be added to conversation history). |
None
|
Raises:
| Type | Description |
|---|---|
ValueError
|
If no conversation history or prompt is provided. |
-
Source code in strands/agent/agent.py
431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 | |
DefaultPromptMapper
¶
Bases: LLMPromptMapper
Default prompt mapper for steering evaluation.
Source code in strands/experimental/steering/handlers/llm/mappers.py
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | |
create_steering_prompt(steering_context, tool_use=None, **kwargs)
¶
Create default steering prompt using Agent SOP structure.
Uses Agent SOP format for structured, constraint-based prompts. See: https://github.com/strands-agents/agent-sop
Source code in strands/experimental/steering/handlers/llm/mappers.py
90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 | |
Guide
¶
Bases: BaseModel
Cancel tool and provide contextual feedback for agent to explore alternatives.
The tool call is cancelled and the agent receives the reason as contextual feedback to help them consider alternative approaches while maintaining adaptive reasoning capabilities.
Source code in strands/experimental/steering/core/action.py
38 39 40 41 42 43 44 45 46 47 | |
Interrupt
¶
Bases: BaseModel
Pause tool execution for human input via interrupt system.
The tool call is paused and human input is requested through Strands' interrupt system. The human can approve or deny the operation, and their decision determines whether the tool executes or is cancelled.
Source code in strands/experimental/steering/core/action.py
50 51 52 53 54 55 56 57 58 59 | |
LLMPromptMapper
¶
Bases: Protocol
Protocol for mapping context and events to LLM evaluation prompts.
Source code in strands/experimental/steering/handlers/llm/mappers.py
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
create_steering_prompt(steering_context, tool_use=None, **kwargs)
¶
Create steering prompt for LLM evaluation.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
steering_context
|
SteeringContext
|
Steering context with populated data |
required |
tool_use
|
ToolUse | None
|
Tool use object for tool call events (None for other events) |
None
|
**kwargs
|
Any
|
Additional event data for other steering events |
{}
|
Returns:
| Type | Description |
|---|---|
str
|
Formatted prompt string for LLM evaluation |
Source code in strands/experimental/steering/handlers/llm/mappers.py
71 72 73 74 75 76 77 78 79 80 81 82 83 84 | |
LLMSteeringHandler
¶
Bases: SteeringHandler
Steering handler that uses an LLM to provide contextual guidance.
Uses natural language prompts to evaluate tool calls and provide contextual steering guidance to help agents navigate complex workflows.
Source code in strands/experimental/steering/handlers/llm/llm_handler.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | |
__init__(system_prompt, prompt_mapper=None, model=None, context_providers=None)
¶
Initialize the LLMSteeringHandler.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
system_prompt
|
str
|
System prompt defining steering guidance rules |
required |
prompt_mapper
|
LLMPromptMapper | None
|
Custom prompt mapper for evaluation prompts |
None
|
model
|
Model | None
|
Optional model override for steering evaluation |
None
|
context_providers
|
list[SteeringContextProvider] | None
|
List of context providers for populating steering context |
None
|
Source code in strands/experimental/steering/handlers/llm/llm_handler.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 | |
steer(agent, tool_use, **kwargs)
async
¶
Provide contextual guidance for tool usage.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
agent
|
'Agent'
|
The agent instance |
required |
tool_use
|
ToolUse
|
The tool use object with name and arguments |
required |
**kwargs
|
Any
|
Additional keyword arguments for steering evaluation |
{}
|
Returns:
| Type | Description |
|---|---|
SteeringAction
|
SteeringAction indicating how to guide the agent's next action |
Source code in strands/experimental/steering/handlers/llm/llm_handler.py
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 | |
LedgerProvider
¶
Bases: SteeringContextProvider
Combined ledger context provider for both before and after tool calls.
Source code in strands/experimental/steering/context_providers/ledger_provider.py
77 78 79 80 81 82 83 84 85 | |
context_providers(**kwargs)
¶
Return ledger context providers with shared state.
Source code in strands/experimental/steering/context_providers/ledger_provider.py
80 81 82 83 84 85 | |
Model
¶
Bases: ABC
Abstract base class for Agent model providers.
This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.
Source code in strands/models/model.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | |
get_config()
abstractmethod
¶
Return the model configuration.
Returns:
| Type | Description |
|---|---|
Any
|
The model's configuration. |
Source code in strands/models/model.py
35 36 37 38 39 40 41 42 43 | |
stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs)
abstractmethod
¶
Stream conversation with the model.
This method handles the full lifecycle of conversing with the model:
- Format the messages, tool specs, and configuration into a streaming request
- Send the request to the model
- Yield the formatted message chunks
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
messages
|
Messages
|
List of message objects to be processed by the model. |
required |
tool_specs
|
Optional[list[ToolSpec]]
|
List of tool specifications to make available to the model. |
None
|
system_prompt
|
Optional[str]
|
System prompt to provide context to the model. |
None
|
tool_choice
|
ToolChoice | None
|
Selection strategy for tool invocation. |
None
|
system_prompt_content
|
list[SystemContentBlock] | None
|
System prompt content blocks for advanced features like caching. |
None
|
**kwargs
|
Any
|
Additional keyword arguments for future extensibility. |
{}
|
Yields:
| Type | Description |
|---|---|
AsyncIterable[StreamEvent]
|
Formatted message chunks from the model. |
Raises:
| Type | Description |
|---|---|
ModelThrottledException
|
When the model service is throttling requests from the client. |
Source code in strands/models/model.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 | |
structured_output(output_model, prompt, system_prompt=None, **kwargs)
abstractmethod
¶
Get structured output from the model.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
output_model
|
Type[T]
|
The output model to use for the agent. |
required |
prompt
|
Messages
|
The prompt messages to use for the agent. |
required |
system_prompt
|
Optional[str]
|
System prompt to provide context to the model. |
None
|
**kwargs
|
Any
|
Additional keyword arguments for future extensibility. |
{}
|
Yields:
| Type | Description |
|---|---|
AsyncGenerator[dict[str, Union[T, Any]], None]
|
Model events with the last being the structured output. |
Raises:
| Type | Description |
|---|---|
ValidationException
|
The response format from the model does not match the output_model |
Source code in strands/models/model.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | |
update_config(**model_config)
abstractmethod
¶
Update the model configuration with the provided arguments.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
**model_config
|
Any
|
Configuration overrides. |
{}
|
Source code in strands/models/model.py
25 26 27 28 29 30 31 32 33 | |
Proceed
¶
Bases: BaseModel
Allow tool to execute immediately without intervention.
The tool call proceeds as planned. The reason provides context for logging and debugging purposes.
Source code in strands/experimental/steering/core/action.py
27 28 29 30 31 32 33 34 35 | |
SteeringContextProvider
¶
Bases: ABC
Abstract base class for context providers that handle multiple event types.
Source code in strands/experimental/steering/core/context.py
71 72 73 74 75 76 77 | |
context_providers(**kwargs)
abstractmethod
¶
Return list of context callbacks with event types extracted from generics.
Source code in strands/experimental/steering/core/context.py
74 75 76 77 | |
SteeringHandler
¶
Bases: HookProvider, ABC
Base class for steering handlers that provide contextual guidance to agents.
Steering handlers maintain local context and register hook callbacks to populate context data as needed for guidance decisions.
Source code in strands/experimental/steering/core/handler.py
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
__init__(context_providers=None)
¶
Initialize the steering handler.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
context_providers
|
list[SteeringContextProvider] | None
|
List of context providers for context updates |
None
|
Source code in strands/experimental/steering/core/handler.py
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 | |
register_hooks(registry, **kwargs)
¶
Register hooks for steering guidance and context updates.
Source code in strands/experimental/steering/core/handler.py
68 69 70 71 72 73 74 75 76 77 | |
steer(agent, tool_use, **kwargs)
abstractmethod
async
¶
Provide contextual guidance to help agent navigate complex workflows.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
agent
|
Agent
|
The agent instance |
required |
tool_use
|
ToolUse
|
The tool use object with name and arguments |
required |
**kwargs
|
Any
|
Additional keyword arguments for guidance evaluation |
{}
|
Returns:
| Type | Description |
|---|---|
SteeringAction
|
SteeringAction indicating how to guide the agent's next action |
Note
Access steering context via self.steering_context
Source code in strands/experimental/steering/core/handler.py
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | |
ToolUse
¶
Bases: TypedDict
A request from the model to use a specific tool with the provided input.
Attributes:
| Name | Type | Description |
|---|---|---|
input |
Any
|
The input parameters for the tool. Can be any JSON-serializable type. |
name |
str
|
The name of the tool to invoke. |
toolUseId |
str
|
A unique identifier for this specific tool use request. |
Source code in strands/types/tools.py
52 53 54 55 56 57 58 59 60 61 62 63 64 | |
_LLMSteering
¶
Bases: BaseModel
Structured output model for LLM steering decisions.
Source code in strands/experimental/steering/handlers/llm/llm_handler.py
24 25 26 27 28 29 30 | |