Skip to content

strands.models.anthropic

Anthropic Claude model provider.

  • Docs: https://docs.anthropic.com/claude/reference/getting-started-with-the-api

Messages = List[Message] module-attribute

A list of messages representing a conversation.

T = TypeVar('T', bound=BaseModel) module-attribute

ToolChoice = Union[ToolChoiceAutoDict, ToolChoiceAnyDict, ToolChoiceToolDict] module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

ToolChoiceToolDict = dict[Literal['tool'], ToolChoiceTool] module-attribute

logger = logging.getLogger(__name__) module-attribute

AnthropicModel

Bases: Model

Anthropic model provider implementation.

Source code in strands/models/anthropic.py
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
class AnthropicModel(Model):
    """Anthropic model provider implementation."""

    EVENT_TYPES = {
        "message_start",
        "content_block_start",
        "content_block_delta",
        "content_block_stop",
        "message_stop",
    }

    OVERFLOW_MESSAGES = {
        "prompt is too long:",
        "input is too long",
        "input length exceeds context window",
        "input and output tokens exceed your context limit",
    }

    class AnthropicConfig(TypedDict, total=False):
        """Configuration options for Anthropic models.

        Attributes:
            max_tokens: Maximum number of tokens to generate.
            model_id: Calude model ID (e.g., "claude-3-7-sonnet-latest").
                For a complete list of supported models, see
                https://docs.anthropic.com/en/docs/about-claude/models/all-models.
            params: Additional model parameters (e.g., temperature).
                For a complete list of supported parameters, see https://docs.anthropic.com/en/api/messages.
        """

        max_tokens: Required[int]
        model_id: Required[str]
        params: Optional[dict[str, Any]]

    def __init__(self, *, client_args: Optional[dict[str, Any]] = None, **model_config: Unpack[AnthropicConfig]):
        """Initialize provider instance.

        Args:
            client_args: Arguments for the underlying Anthropic client (e.g., api_key).
                For a complete list of supported arguments, see https://docs.anthropic.com/en/api/client-sdks.
            **model_config: Configuration options for the Anthropic model.
        """
        validate_config_keys(model_config, self.AnthropicConfig)
        self.config = AnthropicModel.AnthropicConfig(**model_config)

        logger.debug("config=<%s> | initializing", self.config)

        client_args = client_args or {}
        self.client = anthropic.AsyncAnthropic(**client_args)

    @override
    def update_config(self, **model_config: Unpack[AnthropicConfig]) -> None:  # type: ignore[override]
        """Update the Anthropic model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        validate_config_keys(model_config, self.AnthropicConfig)
        self.config.update(model_config)

    @override
    def get_config(self) -> AnthropicConfig:
        """Get the Anthropic model configuration.

        Returns:
            The Anthropic model configuration.
        """
        return self.config

    def _format_request_message_content(self, content: ContentBlock) -> dict[str, Any]:
        """Format an Anthropic content block.

        Args:
            content: Message content.

        Returns:
            Anthropic formatted content block.

        Raises:
            TypeError: If the content block type cannot be converted to an Anthropic-compatible format.
        """
        if "document" in content:
            mime_type = mimetypes.types_map.get(f".{content['document']['format']}", "application/octet-stream")
            return {
                "source": {
                    "data": (
                        content["document"]["source"]["bytes"].decode("utf-8")
                        if mime_type == "text/plain"
                        else base64.b64encode(content["document"]["source"]["bytes"]).decode("utf-8")
                    ),
                    "media_type": mime_type,
                    "type": "text" if mime_type == "text/plain" else "base64",
                },
                "title": content["document"]["name"],
                "type": "document",
            }

        if "image" in content:
            return {
                "source": {
                    "data": base64.b64encode(content["image"]["source"]["bytes"]).decode("utf-8"),
                    "media_type": mimetypes.types_map.get(f".{content['image']['format']}", "application/octet-stream"),
                    "type": "base64",
                },
                "type": "image",
            }

        if "reasoningContent" in content:
            return {
                "signature": content["reasoningContent"]["reasoningText"]["signature"],
                "thinking": content["reasoningContent"]["reasoningText"]["text"],
                "type": "thinking",
            }

        if "text" in content:
            return {"text": content["text"], "type": "text"}

        if "toolUse" in content:
            return {
                "id": content["toolUse"]["toolUseId"],
                "input": content["toolUse"]["input"],
                "name": content["toolUse"]["name"],
                "type": "tool_use",
            }

        if "toolResult" in content:
            return {
                "content": [
                    self._format_request_message_content(
                        {"text": json.dumps(tool_result_content["json"])}
                        if "json" in tool_result_content
                        else cast(ContentBlock, tool_result_content)
                    )
                    for tool_result_content in content["toolResult"]["content"]
                ],
                "is_error": content["toolResult"]["status"] == "error",
                "tool_use_id": content["toolResult"]["toolUseId"],
                "type": "tool_result",
            }

        raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

    def _format_request_messages(self, messages: Messages) -> list[dict[str, Any]]:
        """Format an Anthropic messages array.

        Args:
            messages: List of message objects to be processed by the model.

        Returns:
            An Anthropic messages array.
        """
        formatted_messages = []

        for message in messages:
            formatted_contents: list[dict[str, Any]] = []

            for content in message["content"]:
                if "cachePoint" in content:
                    formatted_contents[-1]["cache_control"] = {"type": "ephemeral"}
                    continue

                formatted_contents.append(self._format_request_message_content(content))

            if formatted_contents:
                formatted_messages.append({"content": formatted_contents, "role": message["role"]})

        return formatted_messages

    def format_request(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        tool_choice: ToolChoice | None = None,
    ) -> dict[str, Any]:
        """Format an Anthropic streaming request.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.

        Returns:
            An Anthropic streaming request.

        Raises:
            TypeError: If a message contains a content block type that cannot be converted to an Anthropic-compatible
                format.
        """
        return {
            "max_tokens": self.config["max_tokens"],
            "messages": self._format_request_messages(messages),
            "model": self.config["model_id"],
            "tools": [
                {
                    "name": tool_spec["name"],
                    "description": tool_spec["description"],
                    "input_schema": tool_spec["inputSchema"]["json"],
                }
                for tool_spec in tool_specs or []
            ],
            **(self._format_tool_choice(tool_choice)),
            **({"system": system_prompt} if system_prompt else {}),
            **(self.config.get("params") or {}),
        }

    @staticmethod
    def _format_tool_choice(tool_choice: ToolChoice | None) -> dict:
        if tool_choice is None:
            return {}

        if "any" in tool_choice:
            return {"tool_choice": {"type": "any"}}
        elif "auto" in tool_choice:
            return {"tool_choice": {"type": "auto"}}
        elif "tool" in tool_choice:
            return {"tool_choice": {"type": "tool", "name": cast(ToolChoiceToolDict, tool_choice)["tool"]["name"]}}
        else:
            return {}

    def format_chunk(self, event: dict[str, Any]) -> StreamEvent:
        """Format the Anthropic response events into standardized message chunks.

        Args:
            event: A response event from the Anthropic model.

        Returns:
            The formatted chunk.

        Raises:
            RuntimeError: If chunk_type is not recognized.
                This error should never be encountered as we control chunk_type in the stream method.
        """
        match event["type"]:
            case "message_start":
                return {"messageStart": {"role": "assistant"}}

            case "content_block_start":
                content = event["content_block"]

                if content["type"] == "tool_use":
                    return {
                        "contentBlockStart": {
                            "contentBlockIndex": event["index"],
                            "start": {
                                "toolUse": {
                                    "name": content["name"],
                                    "toolUseId": content["id"],
                                }
                            },
                        }
                    }

                return {"contentBlockStart": {"contentBlockIndex": event["index"], "start": {}}}

            case "content_block_delta":
                delta = event["delta"]

                match delta["type"]:
                    case "signature_delta":
                        return {
                            "contentBlockDelta": {
                                "contentBlockIndex": event["index"],
                                "delta": {
                                    "reasoningContent": {
                                        "signature": delta["signature"],
                                    },
                                },
                            },
                        }

                    case "thinking_delta":
                        return {
                            "contentBlockDelta": {
                                "contentBlockIndex": event["index"],
                                "delta": {
                                    "reasoningContent": {
                                        "text": delta["thinking"],
                                    },
                                },
                            },
                        }

                    case "input_json_delta":
                        return {
                            "contentBlockDelta": {
                                "contentBlockIndex": event["index"],
                                "delta": {
                                    "toolUse": {
                                        "input": delta["partial_json"],
                                    },
                                },
                            },
                        }

                    case "text_delta":
                        return {
                            "contentBlockDelta": {
                                "contentBlockIndex": event["index"],
                                "delta": {
                                    "text": delta["text"],
                                },
                            },
                        }

                    case _:
                        raise RuntimeError(
                            f"event_type=<content_block_delta>, delta_type=<{delta['type']}> | unknown type"
                        )

            case "content_block_stop":
                return {"contentBlockStop": {"contentBlockIndex": event["index"]}}

            case "message_stop":
                message = event["message"]

                return {"messageStop": {"stopReason": message["stop_reason"]}}

            case "metadata":
                usage = event["usage"]

                return {
                    "metadata": {
                        "usage": {
                            "inputTokens": usage["input_tokens"],
                            "outputTokens": usage["output_tokens"],
                            "totalTokens": usage["input_tokens"] + usage["output_tokens"],
                        },
                        "metrics": {
                            "latencyMs": 0,  # TODO
                        },
                    }
                }

            case _:
                raise RuntimeError(f"event_type=<{event['type']} | unknown type")

    @override
    async def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the Anthropic model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ContextWindowOverflowException: If the input exceeds the model's context window.
            ModelThrottledException: If the request is throttled by Anthropic.
        """
        logger.debug("formatting request")
        request = self.format_request(messages, tool_specs, system_prompt, tool_choice)
        logger.debug("request=<%s>", request)

        logger.debug("invoking model")
        try:
            async with self.client.messages.stream(**request) as stream:
                logger.debug("got response from model")
                async for event in stream:
                    if event.type in AnthropicModel.EVENT_TYPES:
                        yield self.format_chunk(event.model_dump())

                usage = event.message.usage  # type: ignore
                yield self.format_chunk({"type": "metadata", "usage": usage.model_dump()})

        except anthropic.RateLimitError as error:
            raise ModelThrottledException(str(error)) from error

        except anthropic.BadRequestError as error:
            if any(overflow_message in str(error).lower() for overflow_message in AnthropicModel.OVERFLOW_MESSAGES):
                raise ContextWindowOverflowException(str(error)) from error

            raise error

        logger.debug("finished streaming response from model")

    @override
    async def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.
        """
        tool_spec = convert_pydantic_to_tool_spec(output_model)

        response = self.stream(
            messages=prompt,
            tool_specs=[tool_spec],
            system_prompt=system_prompt,
            tool_choice=cast(ToolChoice, {"any": {}}),
            **kwargs,
        )
        async for event in process_stream(response):
            yield event

        stop_reason, messages, _, _ = event["stop"]

        if stop_reason != "tool_use":
            raise ValueError(f'Model returned stop_reason: {stop_reason} instead of "tool_use".')

        content = messages["content"]
        output_response: dict[str, Any] | None = None
        for block in content:
            # if the tool use name doesn't match the tool spec name, skip, and if the block is not a tool use, skip.
            # if the tool use name never matches, raise an error.
            if block.get("toolUse") and block["toolUse"]["name"] == tool_spec["name"]:
                output_response = block["toolUse"]["input"]
            else:
                continue

        if output_response is None:
            raise ValueError("No valid tool use or tool use input was found in the Anthropic response.")

        yield {"output": output_model(**output_response)}

AnthropicConfig

Bases: TypedDict

Configuration options for Anthropic models.

Attributes:

Name Type Description
max_tokens Required[int]

Maximum number of tokens to generate.

model_id Required[str]

Calude model ID (e.g., "claude-3-7-sonnet-latest"). For a complete list of supported models, see https://docs.anthropic.com/en/docs/about-claude/models/all-models.

params Optional[dict[str, Any]]

Additional model parameters (e.g., temperature). For a complete list of supported parameters, see https://docs.anthropic.com/en/api/messages.

Source code in strands/models/anthropic.py
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
class AnthropicConfig(TypedDict, total=False):
    """Configuration options for Anthropic models.

    Attributes:
        max_tokens: Maximum number of tokens to generate.
        model_id: Calude model ID (e.g., "claude-3-7-sonnet-latest").
            For a complete list of supported models, see
            https://docs.anthropic.com/en/docs/about-claude/models/all-models.
        params: Additional model parameters (e.g., temperature).
            For a complete list of supported parameters, see https://docs.anthropic.com/en/api/messages.
    """

    max_tokens: Required[int]
    model_id: Required[str]
    params: Optional[dict[str, Any]]

__init__(*, client_args=None, **model_config)

Initialize provider instance.

Parameters:

Name Type Description Default
client_args Optional[dict[str, Any]]

Arguments for the underlying Anthropic client (e.g., api_key). For a complete list of supported arguments, see https://docs.anthropic.com/en/api/client-sdks.

None
**model_config Unpack[AnthropicConfig]

Configuration options for the Anthropic model.

{}
Source code in strands/models/anthropic.py
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def __init__(self, *, client_args: Optional[dict[str, Any]] = None, **model_config: Unpack[AnthropicConfig]):
    """Initialize provider instance.

    Args:
        client_args: Arguments for the underlying Anthropic client (e.g., api_key).
            For a complete list of supported arguments, see https://docs.anthropic.com/en/api/client-sdks.
        **model_config: Configuration options for the Anthropic model.
    """
    validate_config_keys(model_config, self.AnthropicConfig)
    self.config = AnthropicModel.AnthropicConfig(**model_config)

    logger.debug("config=<%s> | initializing", self.config)

    client_args = client_args or {}
    self.client = anthropic.AsyncAnthropic(**client_args)

format_chunk(event)

Format the Anthropic response events into standardized message chunks.

Parameters:

Name Type Description Default
event dict[str, Any]

A response event from the Anthropic model.

required

Returns:

Type Description
StreamEvent

The formatted chunk.

Raises:

Type Description
RuntimeError

If chunk_type is not recognized. This error should never be encountered as we control chunk_type in the stream method.

Source code in strands/models/anthropic.py
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
def format_chunk(self, event: dict[str, Any]) -> StreamEvent:
    """Format the Anthropic response events into standardized message chunks.

    Args:
        event: A response event from the Anthropic model.

    Returns:
        The formatted chunk.

    Raises:
        RuntimeError: If chunk_type is not recognized.
            This error should never be encountered as we control chunk_type in the stream method.
    """
    match event["type"]:
        case "message_start":
            return {"messageStart": {"role": "assistant"}}

        case "content_block_start":
            content = event["content_block"]

            if content["type"] == "tool_use":
                return {
                    "contentBlockStart": {
                        "contentBlockIndex": event["index"],
                        "start": {
                            "toolUse": {
                                "name": content["name"],
                                "toolUseId": content["id"],
                            }
                        },
                    }
                }

            return {"contentBlockStart": {"contentBlockIndex": event["index"], "start": {}}}

        case "content_block_delta":
            delta = event["delta"]

            match delta["type"]:
                case "signature_delta":
                    return {
                        "contentBlockDelta": {
                            "contentBlockIndex": event["index"],
                            "delta": {
                                "reasoningContent": {
                                    "signature": delta["signature"],
                                },
                            },
                        },
                    }

                case "thinking_delta":
                    return {
                        "contentBlockDelta": {
                            "contentBlockIndex": event["index"],
                            "delta": {
                                "reasoningContent": {
                                    "text": delta["thinking"],
                                },
                            },
                        },
                    }

                case "input_json_delta":
                    return {
                        "contentBlockDelta": {
                            "contentBlockIndex": event["index"],
                            "delta": {
                                "toolUse": {
                                    "input": delta["partial_json"],
                                },
                            },
                        },
                    }

                case "text_delta":
                    return {
                        "contentBlockDelta": {
                            "contentBlockIndex": event["index"],
                            "delta": {
                                "text": delta["text"],
                            },
                        },
                    }

                case _:
                    raise RuntimeError(
                        f"event_type=<content_block_delta>, delta_type=<{delta['type']}> | unknown type"
                    )

        case "content_block_stop":
            return {"contentBlockStop": {"contentBlockIndex": event["index"]}}

        case "message_stop":
            message = event["message"]

            return {"messageStop": {"stopReason": message["stop_reason"]}}

        case "metadata":
            usage = event["usage"]

            return {
                "metadata": {
                    "usage": {
                        "inputTokens": usage["input_tokens"],
                        "outputTokens": usage["output_tokens"],
                        "totalTokens": usage["input_tokens"] + usage["output_tokens"],
                    },
                    "metrics": {
                        "latencyMs": 0,  # TODO
                    },
                }
            }

        case _:
            raise RuntimeError(f"event_type=<{event['type']} | unknown type")

format_request(messages, tool_specs=None, system_prompt=None, tool_choice=None)

Format an Anthropic streaming request.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None

Returns:

Type Description
dict[str, Any]

An Anthropic streaming request.

Raises:

Type Description
TypeError

If a message contains a content block type that cannot be converted to an Anthropic-compatible format.

Source code in strands/models/anthropic.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def format_request(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    tool_choice: ToolChoice | None = None,
) -> dict[str, Any]:
    """Format an Anthropic streaming request.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.

    Returns:
        An Anthropic streaming request.

    Raises:
        TypeError: If a message contains a content block type that cannot be converted to an Anthropic-compatible
            format.
    """
    return {
        "max_tokens": self.config["max_tokens"],
        "messages": self._format_request_messages(messages),
        "model": self.config["model_id"],
        "tools": [
            {
                "name": tool_spec["name"],
                "description": tool_spec["description"],
                "input_schema": tool_spec["inputSchema"]["json"],
            }
            for tool_spec in tool_specs or []
        ],
        **(self._format_tool_choice(tool_choice)),
        **({"system": system_prompt} if system_prompt else {}),
        **(self.config.get("params") or {}),
    }

get_config()

Get the Anthropic model configuration.

Returns:

Type Description
AnthropicConfig

The Anthropic model configuration.

Source code in strands/models/anthropic.py
90
91
92
93
94
95
96
97
@override
def get_config(self) -> AnthropicConfig:
    """Get the Anthropic model configuration.

    Returns:
        The Anthropic model configuration.
    """
    return self.config

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, **kwargs) async

Stream conversation with the Anthropic model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Formatted message chunks from the model.

Raises:

Type Description
ContextWindowOverflowException

If the input exceeds the model's context window.

ModelThrottledException

If the request is throttled by Anthropic.

Source code in strands/models/anthropic.py
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
@override
async def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the Anthropic model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ContextWindowOverflowException: If the input exceeds the model's context window.
        ModelThrottledException: If the request is throttled by Anthropic.
    """
    logger.debug("formatting request")
    request = self.format_request(messages, tool_specs, system_prompt, tool_choice)
    logger.debug("request=<%s>", request)

    logger.debug("invoking model")
    try:
        async with self.client.messages.stream(**request) as stream:
            logger.debug("got response from model")
            async for event in stream:
                if event.type in AnthropicModel.EVENT_TYPES:
                    yield self.format_chunk(event.model_dump())

            usage = event.message.usage  # type: ignore
            yield self.format_chunk({"type": "metadata", "usage": usage.model_dump()})

    except anthropic.RateLimitError as error:
        raise ModelThrottledException(str(error)) from error

    except anthropic.BadRequestError as error:
        if any(overflow_message in str(error).lower() for overflow_message in AnthropicModel.OVERFLOW_MESSAGES):
            raise ContextWindowOverflowException(str(error)) from error

        raise error

    logger.debug("finished streaming response from model")

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Source code in strands/models/anthropic.py
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
@override
async def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.
    """
    tool_spec = convert_pydantic_to_tool_spec(output_model)

    response = self.stream(
        messages=prompt,
        tool_specs=[tool_spec],
        system_prompt=system_prompt,
        tool_choice=cast(ToolChoice, {"any": {}}),
        **kwargs,
    )
    async for event in process_stream(response):
        yield event

    stop_reason, messages, _, _ = event["stop"]

    if stop_reason != "tool_use":
        raise ValueError(f'Model returned stop_reason: {stop_reason} instead of "tool_use".')

    content = messages["content"]
    output_response: dict[str, Any] | None = None
    for block in content:
        # if the tool use name doesn't match the tool spec name, skip, and if the block is not a tool use, skip.
        # if the tool use name never matches, raise an error.
        if block.get("toolUse") and block["toolUse"]["name"] == tool_spec["name"]:
            output_response = block["toolUse"]["input"]
        else:
            continue

    if output_response is None:
        raise ValueError("No valid tool use or tool use input was found in the Anthropic response.")

    yield {"output": output_model(**output_response)}

update_config(**model_config)

Update the Anthropic model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[AnthropicConfig]

Configuration overrides.

{}
Source code in strands/models/anthropic.py
80
81
82
83
84
85
86
87
88
@override
def update_config(self, **model_config: Unpack[AnthropicConfig]) -> None:  # type: ignore[override]
    """Update the Anthropic model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    validate_config_keys(model_config, self.AnthropicConfig)
    self.config.update(model_config)

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

ContextWindowOverflowException

Bases: Exception

Exception raised when the context window is exceeded.

This exception is raised when the input to a model exceeds the maximum context window size that the model can handle. This typically occurs when the combined length of the conversation history, system prompt, and current message is too large for the model to process.

Source code in strands/types/exceptions.py
38
39
40
41
42
43
44
45
46
class ContextWindowOverflowException(Exception):
    """Exception raised when the context window is exceeded.

    This exception is raised when the input to a model exceeds the maximum context window size that the model can
    handle. This typically occurs when the combined length of the conversation history, system prompt, and current
    message is too large for the model to process.
    """

    pass

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
35
36
37
38
39
40
41
42
43
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
25
26
27
28
29
30
31
32
33
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

ModelThrottledException

Bases: Exception

Exception raised when the model is throttled.

This exception is raised when the model is throttled by the service. This typically occurs when the service is throttling the requests from the client.

Source code in strands/types/exceptions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ModelThrottledException(Exception):
    """Exception raised when the model is throttled.

    This exception is raised when the model is throttled by the service. This typically occurs when the service is
    throttling the requests from the client.
    """

    def __init__(self, message: str) -> None:
        """Initialize exception.

        Args:
            message: The message from the service that describes the throttling.
        """
        self.message = message
        super().__init__(message)

    pass

__init__(message)

Initialize exception.

Parameters:

Name Type Description Default
message str

The message from the service that describes the throttling.

required
Source code in strands/types/exceptions.py
62
63
64
65
66
67
68
69
def __init__(self, message: str) -> None:
    """Initialize exception.

    Args:
        message: The message from the service that describes the throttling.
    """
    self.message = message
    super().__init__(message)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

convert_pydantic_to_tool_spec(model, description=None)

Converts a Pydantic model to a tool description for the Amazon Bedrock Converse API.

Handles optional vs. required fields, resolves $refs, and uses docstrings.

Parameters:

Name Type Description Default
model Type[BaseModel]

The Pydantic model class to convert

required
description Optional[str]

Optional description of the tool's purpose

None

Returns:

Name Type Description
ToolSpec ToolSpec

Dict containing the Bedrock tool specification

Source code in strands/tools/structured_output/structured_output_utils.py
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
def convert_pydantic_to_tool_spec(
    model: Type[BaseModel],
    description: Optional[str] = None,
) -> ToolSpec:
    """Converts a Pydantic model to a tool description for the Amazon Bedrock Converse API.

    Handles optional vs. required fields, resolves $refs, and uses docstrings.

    Args:
        model: The Pydantic model class to convert
        description: Optional description of the tool's purpose

    Returns:
        ToolSpec: Dict containing the Bedrock tool specification
    """
    name = model.__name__

    # Get the JSON schema
    input_schema = model.model_json_schema()

    # Get model docstring for description if not provided
    model_description = description
    if not model_description and model.__doc__:
        model_description = model.__doc__.strip()

    # Process all referenced models to ensure proper docstrings
    # This step is important for gathering descriptions from referenced models
    _process_referenced_models(input_schema, model)

    # Now, let's fully expand the nested models with all their properties
    _expand_nested_properties(input_schema, model)

    # Flatten the schema
    flattened_schema = _flatten_schema(input_schema)

    final_schema = flattened_schema

    # Construct the tool specification
    return ToolSpec(
        name=name,
        description=model_description or f"{name} structured output tool",
        inputSchema={"json": final_schema},
    )

process_stream(chunks, start_time=None) async

Processes the response stream from the API, constructing the final message and extracting usage metrics.

Parameters:

Name Type Description Default
chunks AsyncIterable[StreamEvent]

The chunks of the response stream from the model.

required
start_time float | None

Time when the model request is initiated

None

Yields:

Type Description
AsyncGenerator[TypedEvent, None]

The reason for stopping, the constructed message, and the usage metrics.

Source code in strands/event_loop/streaming.py
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
async def process_stream(
    chunks: AsyncIterable[StreamEvent], start_time: float | None = None
) -> AsyncGenerator[TypedEvent, None]:
    """Processes the response stream from the API, constructing the final message and extracting usage metrics.

    Args:
        chunks: The chunks of the response stream from the model.
        start_time: Time when the model request is initiated

    Yields:
        The reason for stopping, the constructed message, and the usage metrics.
    """
    stop_reason: StopReason = "end_turn"
    first_byte_time = None

    state: dict[str, Any] = {
        "message": {"role": "assistant", "content": []},
        "text": "",
        "current_tool_use": {},
        "reasoningText": "",
        "citationsContent": [],
    }
    state["content"] = state["message"]["content"]

    usage: Usage = Usage(inputTokens=0, outputTokens=0, totalTokens=0)
    metrics: Metrics = Metrics(latencyMs=0, timeToFirstByteMs=0)

    async for chunk in chunks:
        # Track first byte time when we get first content
        if first_byte_time is None and ("contentBlockDelta" in chunk or "contentBlockStart" in chunk):
            first_byte_time = time.time()
        yield ModelStreamChunkEvent(chunk=chunk)

        if "messageStart" in chunk:
            state["message"] = handle_message_start(chunk["messageStart"], state["message"])
        elif "contentBlockStart" in chunk:
            state["current_tool_use"] = handle_content_block_start(chunk["contentBlockStart"])
        elif "contentBlockDelta" in chunk:
            state, typed_event = handle_content_block_delta(chunk["contentBlockDelta"], state)
            yield typed_event
        elif "contentBlockStop" in chunk:
            state = handle_content_block_stop(state)
        elif "messageStop" in chunk:
            stop_reason = handle_message_stop(chunk["messageStop"])
        elif "metadata" in chunk:
            time_to_first_byte_ms = (
                int(1000 * (first_byte_time - start_time)) if (start_time and first_byte_time) else None
            )
            usage, metrics = extract_usage_metrics(chunk["metadata"], time_to_first_byte_ms)
        elif "redactContent" in chunk:
            handle_redact_content(chunk["redactContent"], state)

    yield ModelStopReason(stop_reason=stop_reason, message=state["message"], usage=usage, metrics=metrics)

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class Type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def validate_config_keys(config_dict: Mapping[str, Any], config_class: Type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )