Skip to content

strands.models.gemini

Google Gemini model provider.

  • Docs: https://ai.google.dev/api

Messages = List[Message] module-attribute

A list of messages representing a conversation.

T = TypeVar('T', bound=(pydantic.BaseModel)) module-attribute

ToolChoice = Union[ToolChoiceAutoDict, ToolChoiceAnyDict, ToolChoiceToolDict] module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

logger = logging.getLogger(__name__) module-attribute

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

ContextWindowOverflowException

Bases: Exception

Exception raised when the context window is exceeded.

This exception is raised when the input to a model exceeds the maximum context window size that the model can handle. This typically occurs when the combined length of the conversation history, system prompt, and current message is too large for the model to process.

Source code in strands/types/exceptions.py
38
39
40
41
42
43
44
45
46
class ContextWindowOverflowException(Exception):
    """Exception raised when the context window is exceeded.

    This exception is raised when the input to a model exceeds the maximum context window size that the model can
    handle. This typically occurs when the combined length of the conversation history, system prompt, and current
    message is too large for the model to process.
    """

    pass

GeminiModel

Bases: Model

Google Gemini model provider implementation.

  • Docs: https://ai.google.dev/api
Source code in strands/models/gemini.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
class GeminiModel(Model):
    """Google Gemini model provider implementation.

    - Docs: https://ai.google.dev/api
    """

    class GeminiConfig(TypedDict, total=False):
        """Configuration options for Gemini models.

        Attributes:
            model_id: Gemini model ID (e.g., "gemini-2.5-flash").
                For a complete list of supported models, see
                https://ai.google.dev/gemini-api/docs/models
            params: Additional model parameters (e.g., temperature).
                For a complete list of supported parameters, see
                https://ai.google.dev/api/generate-content#generationconfig.
            gemini_tools: Gemini-specific tools that are not FunctionDeclarations
                (e.g., GoogleSearch, CodeExecution, ComputerUse, UrlContext, FileSearch).
                Use the standard tools interface for function calling tools.
                For a complete list of supported tools, see
                https://ai.google.dev/api/caching#Tool
        """

        model_id: Required[str]
        params: dict[str, Any]
        gemini_tools: list[genai.types.Tool]

    def __init__(
        self,
        *,
        client: Optional[genai.Client] = None,
        client_args: Optional[dict[str, Any]] = None,
        **model_config: Unpack[GeminiConfig],
    ) -> None:
        """Initialize provider instance.

        Args:
            client: Pre-configured Gemini client to reuse across requests.
                When provided, this client will be reused for all requests and will NOT be closed
                by the model. The caller is responsible for managing the client lifecycle.
                This is useful for:
                - Injecting custom client wrappers
                - Reusing connection pools within a single event loop/worker
                - Centralizing observability, retries, and networking policy
                Note: The client should not be shared across different asyncio event loops.
            client_args: Arguments for the underlying Gemini client (e.g., api_key).
                For a complete list of supported arguments, see https://googleapis.github.io/python-genai/.
            **model_config: Configuration options for the Gemini model.

        Raises:
            ValueError: If both `client` and `client_args` are provided.
        """
        validate_config_keys(model_config, GeminiModel.GeminiConfig)
        self.config = GeminiModel.GeminiConfig(**model_config)

        # Validate that only one client configuration method is provided
        if client is not None and client_args is not None and len(client_args) > 0:
            raise ValueError("Only one of 'client' or 'client_args' should be provided, not both.")

        self._custom_client = client
        self.client_args = client_args or {}

        # Validate gemini_tools if provided
        if "gemini_tools" in self.config:
            self._validate_gemini_tools(self.config["gemini_tools"])

        logger.debug("config=<%s> | initializing", self.config)

    @override
    def update_config(self, **model_config: Unpack[GeminiConfig]) -> None:  # type: ignore[override]
        """Update the Gemini model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        # Validate gemini_tools if provided
        if "gemini_tools" in model_config:
            self._validate_gemini_tools(model_config["gemini_tools"])

        self.config.update(model_config)

    @override
    def get_config(self) -> GeminiConfig:
        """Get the Gemini model configuration.

        Returns:
            The Gemini model configuration.
        """
        return self.config

    def _get_client(self) -> genai.Client:
        """Get a Gemini client for making requests.

        This method handles client lifecycle management:
        - If an injected client was provided during initialization, it returns that client
          without managing its lifecycle (caller is responsible for cleanup).
        - Otherwise, creates a new genai.Client from client_args.

        Returns:
            genai.Client: A Gemini client instance.
        """
        if self._custom_client is not None:
            # Use the injected client (caller manages lifecycle)
            return self._custom_client
        else:
            # Create a new client from client_args
            return genai.Client(**self.client_args)

    def _format_request_content_part(self, content: ContentBlock) -> genai.types.Part:
        """Format content block into a Gemini part instance.

        - Docs: https://googleapis.github.io/python-genai/genai.html#genai.types.Part

        Args:
            content: Message content to format.

        Returns:
            Gemini part.
        """
        if "document" in content:
            return genai.types.Part(
                inline_data=genai.types.Blob(
                    data=content["document"]["source"]["bytes"],
                    mime_type=mimetypes.types_map.get(f".{content['document']['format']}", "application/octet-stream"),
                ),
            )

        if "image" in content:
            return genai.types.Part(
                inline_data=genai.types.Blob(
                    data=content["image"]["source"]["bytes"],
                    mime_type=mimetypes.types_map.get(f".{content['image']['format']}", "application/octet-stream"),
                ),
            )

        if "reasoningContent" in content:
            thought_signature = content["reasoningContent"]["reasoningText"].get("signature")

            return genai.types.Part(
                text=content["reasoningContent"]["reasoningText"]["text"],
                thought=True,
                thought_signature=thought_signature.encode("utf-8") if thought_signature else None,
            )

        if "text" in content:
            return genai.types.Part(text=content["text"])

        if "toolResult" in content:
            return genai.types.Part(
                function_response=genai.types.FunctionResponse(
                    id=content["toolResult"]["toolUseId"],
                    name=content["toolResult"]["toolUseId"],
                    response={
                        "output": [
                            tool_result_content
                            if "json" in tool_result_content
                            else self._format_request_content_part(
                                cast(ContentBlock, tool_result_content)
                            ).to_json_dict()
                            for tool_result_content in content["toolResult"]["content"]
                        ],
                    },
                ),
            )

        if "toolUse" in content:
            return genai.types.Part(
                function_call=genai.types.FunctionCall(
                    args=content["toolUse"]["input"],
                    id=content["toolUse"]["toolUseId"],
                    name=content["toolUse"]["name"],
                ),
            )

        raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

    def _format_request_content(self, messages: Messages) -> list[genai.types.Content]:
        """Format message content into Gemini content instances.

        - Docs: https://googleapis.github.io/python-genai/genai.html#genai.types.Content

        Args:
            messages: List of message objects to be processed by the model.

        Returns:
            Gemini content list.
        """
        return [
            genai.types.Content(
                parts=[self._format_request_content_part(content) for content in message["content"]],
                role="user" if message["role"] == "user" else "model",
            )
            for message in messages
        ]

    def _format_request_tools(self, tool_specs: Optional[list[ToolSpec]]) -> list[genai.types.Tool | Any]:
        """Format tool specs into Gemini tools.

        - Docs: https://googleapis.github.io/python-genai/genai.html#genai.types.Tool

        Args:
            tool_specs: List of tool specifications to make available to the model.

        Return:
            Gemini tool list.
        """
        tools = [
            genai.types.Tool(
                function_declarations=[
                    genai.types.FunctionDeclaration(
                        description=tool_spec["description"],
                        name=tool_spec["name"],
                        parameters_json_schema=tool_spec["inputSchema"]["json"],
                    )
                    for tool_spec in tool_specs or []
                ],
            ),
        ]
        if self.config.get("gemini_tools"):
            tools.extend(self.config["gemini_tools"])
        return tools

    def _format_request_config(
        self,
        tool_specs: Optional[list[ToolSpec]],
        system_prompt: Optional[str],
        params: Optional[dict[str, Any]],
    ) -> genai.types.GenerateContentConfig:
        """Format Gemini request config.

        - Docs: https://googleapis.github.io/python-genai/genai.html#genai.types.GenerateContentConfig

        Args:
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            params: Additional model parameters (e.g., temperature).

        Returns:
            Gemini request config.
        """
        return genai.types.GenerateContentConfig(
            system_instruction=system_prompt,
            tools=self._format_request_tools(tool_specs),
            **(params or {}),
        )

    def _format_request(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]],
        system_prompt: Optional[str],
        params: Optional[dict[str, Any]],
    ) -> dict[str, Any]:
        """Format a Gemini streaming request.

        - Docs: https://ai.google.dev/api/generate-content#endpoint_1

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            params: Additional model parameters (e.g., temperature).

        Returns:
            A Gemini streaming request.
        """
        return {
            "config": self._format_request_config(tool_specs, system_prompt, params).to_json_dict(),
            "contents": [content.to_json_dict() for content in self._format_request_content(messages)],
            "model": self.config["model_id"],
        }

    def _format_chunk(self, event: dict[str, Any]) -> StreamEvent:
        """Format the Gemini response events into standardized message chunks.

        Args:
            event: A response event from the Gemini model.

        Returns:
            The formatted chunk.

        Raises:
            RuntimeError: If chunk_type is not recognized.
                This error should never be encountered as we control chunk_type in the stream method.
        """
        match event["chunk_type"]:
            case "message_start":
                return {"messageStart": {"role": "assistant"}}

            case "content_start":
                match event["data_type"]:
                    case "tool":
                        # Note: toolUseId is the only identifier available in a tool result. However, Gemini requires
                        #       that name be set in the equivalent FunctionResponse type. Consequently, we assign
                        #       function name to toolUseId in our tool use block. And another reason, function_call is
                        #       not guaranteed to have id populated.
                        return {
                            "contentBlockStart": {
                                "start": {
                                    "toolUse": {
                                        "name": event["data"].function_call.name,
                                        "toolUseId": event["data"].function_call.name,
                                    },
                                },
                            },
                        }

                    case _:
                        return {"contentBlockStart": {"start": {}}}

            case "content_delta":
                match event["data_type"]:
                    case "tool":
                        return {
                            "contentBlockDelta": {
                                "delta": {"toolUse": {"input": json.dumps(event["data"].function_call.args)}}
                            }
                        }

                    case "reasoning_content":
                        return {
                            "contentBlockDelta": {
                                "delta": {
                                    "reasoningContent": {
                                        "text": event["data"].text,
                                        **(
                                            {"signature": event["data"].thought_signature.decode("utf-8")}
                                            if event["data"].thought_signature
                                            else {}
                                        ),
                                    },
                                },
                            },
                        }

                    case _:
                        return {"contentBlockDelta": {"delta": {"text": event["data"].text}}}

            case "content_stop":
                return {"contentBlockStop": {}}

            case "message_stop":
                match event["data"]:
                    case "TOOL_USE":
                        return {"messageStop": {"stopReason": "tool_use"}}
                    case "MAX_TOKENS":
                        return {"messageStop": {"stopReason": "max_tokens"}}
                    case _:
                        return {"messageStop": {"stopReason": "end_turn"}}

            case "metadata":
                return {
                    "metadata": {
                        "usage": {
                            "inputTokens": event["data"].prompt_token_count,
                            "outputTokens": event["data"].total_token_count - event["data"].prompt_token_count,
                            "totalTokens": event["data"].total_token_count,
                        },
                        "metrics": {
                            "latencyMs": 0,  # TODO
                        },
                    },
                }

            case _:  # pragma: no cover
                raise RuntimeError(f"chunk_type=<{event['chunk_type']} | unknown type")

    async def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        tool_choice: ToolChoice | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the Gemini model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
                Note: Currently unused.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: If the request is throttled by Gemini.
        """
        request = self._format_request(messages, tool_specs, system_prompt, self.config.get("params"))

        client = self._get_client().aio

        try:
            response = await client.models.generate_content_stream(**request)

            yield self._format_chunk({"chunk_type": "message_start"})
            yield self._format_chunk({"chunk_type": "content_start", "data_type": "text"})

            tool_used = False
            async for event in response:
                candidates = event.candidates
                candidate = candidates[0] if candidates else None
                content = candidate.content if candidate else None
                parts = content.parts if content and content.parts else []

                for part in parts:
                    if part.function_call:
                        yield self._format_chunk({"chunk_type": "content_start", "data_type": "tool", "data": part})
                        yield self._format_chunk({"chunk_type": "content_delta", "data_type": "tool", "data": part})
                        yield self._format_chunk({"chunk_type": "content_stop", "data_type": "tool", "data": part})
                        tool_used = True

                    if part.text:
                        yield self._format_chunk(
                            {
                                "chunk_type": "content_delta",
                                "data_type": "reasoning_content" if part.thought else "text",
                                "data": part,
                            },
                        )

            yield self._format_chunk({"chunk_type": "content_stop", "data_type": "text"})
            yield self._format_chunk(
                {
                    "chunk_type": "message_stop",
                    "data": "TOOL_USE" if tool_used else (candidate.finish_reason if candidate else "STOP"),
                }
            )
            yield self._format_chunk({"chunk_type": "metadata", "data": event.usage_metadata})

        except genai.errors.ClientError as error:
            if not error.message:
                raise

            try:
                message = json.loads(error.message) if error.message else {}
            except json.JSONDecodeError as e:
                logger.warning("error_message=<%s> | Gemini API returned non-JSON error", error.message)
                # Re-raise the original ClientError (not JSONDecodeError) and make the JSON error the explicit cause
                raise error from e

            match message["error"]["status"]:
                case "RESOURCE_EXHAUSTED" | "UNAVAILABLE":
                    raise ModelThrottledException(error.message) from error
                case "INVALID_ARGUMENT":
                    if "exceeds the maximum number of tokens" in message["error"]["message"]:
                        raise ContextWindowOverflowException(error.message) from error
                    raise error
                case _:
                    raise error

    @override
    async def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model using Gemini's native structured output.

        - Docs: https://ai.google.dev/gemini-api/docs/structured-output

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.
        """
        params = {
            **(self.config.get("params") or {}),
            "response_mime_type": "application/json",
            "response_schema": output_model.model_json_schema(),
        }
        request = self._format_request(prompt, None, system_prompt, params)
        client = self._get_client().aio
        response = await client.models.generate_content(**request)
        yield {"output": output_model.model_validate(response.parsed)}

    @staticmethod
    def _validate_gemini_tools(gemini_tools: list[genai.types.Tool]) -> None:
        """Validate that gemini_tools does not contain FunctionDeclarations.

        Gemini-specific tools should only include tools that cannot be represented
        as FunctionDeclarations (e.g., GoogleSearch, CodeExecution, ComputerUse).
        Standard function calling tools should use the tools interface instead.

        Args:
            gemini_tools: List of Gemini tools to validate

        Raises:
            ValueError: If any tool contains function_declarations
        """
        for tool in gemini_tools:
            # Check if the tool has function_declarations attribute and it's not empty
            if hasattr(tool, "function_declarations") and tool.function_declarations:
                raise ValueError(
                    "gemini_tools should not contain FunctionDeclarations. "
                    "Use the standard tools interface for function calling tools. "
                    "gemini_tools is reserved for Gemini-specific tools like "
                    "GoogleSearch, CodeExecution, ComputerUse, UrlContext, and FileSearch."
                )

GeminiConfig

Bases: TypedDict

Configuration options for Gemini models.

Attributes:

Name Type Description
model_id Required[str]

Gemini model ID (e.g., "gemini-2.5-flash"). For a complete list of supported models, see https://ai.google.dev/gemini-api/docs/models

params dict[str, Any]

Additional model parameters (e.g., temperature). For a complete list of supported parameters, see https://ai.google.dev/api/generate-content#generationconfig.

gemini_tools list[Tool]

Gemini-specific tools that are not FunctionDeclarations (e.g., GoogleSearch, CodeExecution, ComputerUse, UrlContext, FileSearch). Use the standard tools interface for function calling tools. For a complete list of supported tools, see https://ai.google.dev/api/caching#Tool

Source code in strands/models/gemini.py
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
class GeminiConfig(TypedDict, total=False):
    """Configuration options for Gemini models.

    Attributes:
        model_id: Gemini model ID (e.g., "gemini-2.5-flash").
            For a complete list of supported models, see
            https://ai.google.dev/gemini-api/docs/models
        params: Additional model parameters (e.g., temperature).
            For a complete list of supported parameters, see
            https://ai.google.dev/api/generate-content#generationconfig.
        gemini_tools: Gemini-specific tools that are not FunctionDeclarations
            (e.g., GoogleSearch, CodeExecution, ComputerUse, UrlContext, FileSearch).
            Use the standard tools interface for function calling tools.
            For a complete list of supported tools, see
            https://ai.google.dev/api/caching#Tool
    """

    model_id: Required[str]
    params: dict[str, Any]
    gemini_tools: list[genai.types.Tool]

__init__(*, client=None, client_args=None, **model_config)

Initialize provider instance.

Parameters:

Name Type Description Default
client Optional[Client]

Pre-configured Gemini client to reuse across requests. When provided, this client will be reused for all requests and will NOT be closed by the model. The caller is responsible for managing the client lifecycle. This is useful for: - Injecting custom client wrappers - Reusing connection pools within a single event loop/worker - Centralizing observability, retries, and networking policy Note: The client should not be shared across different asyncio event loops.

None
client_args Optional[dict[str, Any]]

Arguments for the underlying Gemini client (e.g., api_key). For a complete list of supported arguments, see https://googleapis.github.io/python-genai/.

None
**model_config Unpack[GeminiConfig]

Configuration options for the Gemini model.

{}

Raises:

Type Description
ValueError

If both client and client_args are provided.

Source code in strands/models/gemini.py
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
def __init__(
    self,
    *,
    client: Optional[genai.Client] = None,
    client_args: Optional[dict[str, Any]] = None,
    **model_config: Unpack[GeminiConfig],
) -> None:
    """Initialize provider instance.

    Args:
        client: Pre-configured Gemini client to reuse across requests.
            When provided, this client will be reused for all requests and will NOT be closed
            by the model. The caller is responsible for managing the client lifecycle.
            This is useful for:
            - Injecting custom client wrappers
            - Reusing connection pools within a single event loop/worker
            - Centralizing observability, retries, and networking policy
            Note: The client should not be shared across different asyncio event loops.
        client_args: Arguments for the underlying Gemini client (e.g., api_key).
            For a complete list of supported arguments, see https://googleapis.github.io/python-genai/.
        **model_config: Configuration options for the Gemini model.

    Raises:
        ValueError: If both `client` and `client_args` are provided.
    """
    validate_config_keys(model_config, GeminiModel.GeminiConfig)
    self.config = GeminiModel.GeminiConfig(**model_config)

    # Validate that only one client configuration method is provided
    if client is not None and client_args is not None and len(client_args) > 0:
        raise ValueError("Only one of 'client' or 'client_args' should be provided, not both.")

    self._custom_client = client
    self.client_args = client_args or {}

    # Validate gemini_tools if provided
    if "gemini_tools" in self.config:
        self._validate_gemini_tools(self.config["gemini_tools"])

    logger.debug("config=<%s> | initializing", self.config)

get_config()

Get the Gemini model configuration.

Returns:

Type Description
GeminiConfig

The Gemini model configuration.

Source code in strands/models/gemini.py
108
109
110
111
112
113
114
115
@override
def get_config(self) -> GeminiConfig:
    """Get the Gemini model configuration.

    Returns:
        The Gemini model configuration.
    """
    return self.config

stream(messages, tool_specs=None, system_prompt=None, tool_choice=None, **kwargs) async

Stream conversation with the Gemini model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation. Note: Currently unused.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

If the request is throttled by Gemini.

Source code in strands/models/gemini.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
async def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    tool_choice: ToolChoice | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the Gemini model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
            Note: Currently unused.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: If the request is throttled by Gemini.
    """
    request = self._format_request(messages, tool_specs, system_prompt, self.config.get("params"))

    client = self._get_client().aio

    try:
        response = await client.models.generate_content_stream(**request)

        yield self._format_chunk({"chunk_type": "message_start"})
        yield self._format_chunk({"chunk_type": "content_start", "data_type": "text"})

        tool_used = False
        async for event in response:
            candidates = event.candidates
            candidate = candidates[0] if candidates else None
            content = candidate.content if candidate else None
            parts = content.parts if content and content.parts else []

            for part in parts:
                if part.function_call:
                    yield self._format_chunk({"chunk_type": "content_start", "data_type": "tool", "data": part})
                    yield self._format_chunk({"chunk_type": "content_delta", "data_type": "tool", "data": part})
                    yield self._format_chunk({"chunk_type": "content_stop", "data_type": "tool", "data": part})
                    tool_used = True

                if part.text:
                    yield self._format_chunk(
                        {
                            "chunk_type": "content_delta",
                            "data_type": "reasoning_content" if part.thought else "text",
                            "data": part,
                        },
                    )

        yield self._format_chunk({"chunk_type": "content_stop", "data_type": "text"})
        yield self._format_chunk(
            {
                "chunk_type": "message_stop",
                "data": "TOOL_USE" if tool_used else (candidate.finish_reason if candidate else "STOP"),
            }
        )
        yield self._format_chunk({"chunk_type": "metadata", "data": event.usage_metadata})

    except genai.errors.ClientError as error:
        if not error.message:
            raise

        try:
            message = json.loads(error.message) if error.message else {}
        except json.JSONDecodeError as e:
            logger.warning("error_message=<%s> | Gemini API returned non-JSON error", error.message)
            # Re-raise the original ClientError (not JSONDecodeError) and make the JSON error the explicit cause
            raise error from e

        match message["error"]["status"]:
            case "RESOURCE_EXHAUSTED" | "UNAVAILABLE":
                raise ModelThrottledException(error.message) from error
            case "INVALID_ARGUMENT":
                if "exceeds the maximum number of tokens" in message["error"]["message"]:
                    raise ContextWindowOverflowException(error.message) from error
                raise error
            case _:
                raise error

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output from the model using Gemini's native structured output.

  • Docs: https://ai.google.dev/gemini-api/docs/structured-output

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Source code in strands/models/gemini.py
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
@override
async def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model using Gemini's native structured output.

    - Docs: https://ai.google.dev/gemini-api/docs/structured-output

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.
    """
    params = {
        **(self.config.get("params") or {}),
        "response_mime_type": "application/json",
        "response_schema": output_model.model_json_schema(),
    }
    request = self._format_request(prompt, None, system_prompt, params)
    client = self._get_client().aio
    response = await client.models.generate_content(**request)
    yield {"output": output_model.model_validate(response.parsed)}

update_config(**model_config)

Update the Gemini model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[GeminiConfig]

Configuration overrides.

{}
Source code in strands/models/gemini.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
@override
def update_config(self, **model_config: Unpack[GeminiConfig]) -> None:  # type: ignore[override]
    """Update the Gemini model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    # Validate gemini_tools if provided
    if "gemini_tools" in model_config:
        self._validate_gemini_tools(model_config["gemini_tools"])

    self.config.update(model_config)

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
35
36
37
38
39
40
41
42
43
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
25
26
27
28
29
30
31
32
33
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

ModelThrottledException

Bases: Exception

Exception raised when the model is throttled.

This exception is raised when the model is throttled by the service. This typically occurs when the service is throttling the requests from the client.

Source code in strands/types/exceptions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ModelThrottledException(Exception):
    """Exception raised when the model is throttled.

    This exception is raised when the model is throttled by the service. This typically occurs when the service is
    throttling the requests from the client.
    """

    def __init__(self, message: str) -> None:
        """Initialize exception.

        Args:
            message: The message from the service that describes the throttling.
        """
        self.message = message
        super().__init__(message)

    pass

__init__(message)

Initialize exception.

Parameters:

Name Type Description Default
message str

The message from the service that describes the throttling.

required
Source code in strands/types/exceptions.py
62
63
64
65
66
67
68
69
def __init__(self, message: str) -> None:
    """Initialize exception.

    Args:
        message: The message from the service that describes the throttling.
    """
    self.message = message
    super().__init__(message)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class Type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def validate_config_keys(config_dict: Mapping[str, Any], config_class: Type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )