Skip to content

strands.models.llamacpp

llama.cpp model provider.

Provides integration with llama.cpp servers running in OpenAI-compatible mode, with support for advanced llama.cpp-specific features.

  • Docs: https://github.com/ggml-org/llama.cpp
  • Server docs: https://github.com/ggml-org/llama.cpp/tree/master/tools/server
  • OpenAI API compatibility: https://github.com/ggml-org/llama.cpp/blob/master/tools/server/README.md#api-endpoints

Messages = List[Message] module-attribute

A list of messages representing a conversation.

T = TypeVar('T', bound=BaseModel) module-attribute

ToolChoice = Union[ToolChoiceAutoDict, ToolChoiceAnyDict, ToolChoiceToolDict] module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

logger = logging.getLogger(__name__) module-attribute

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

ContextWindowOverflowException

Bases: Exception

Exception raised when the context window is exceeded.

This exception is raised when the input to a model exceeds the maximum context window size that the model can handle. This typically occurs when the combined length of the conversation history, system prompt, and current message is too large for the model to process.

Source code in strands/types/exceptions.py
38
39
40
41
42
43
44
45
46
class ContextWindowOverflowException(Exception):
    """Exception raised when the context window is exceeded.

    This exception is raised when the input to a model exceeds the maximum context window size that the model can
    handle. This typically occurs when the combined length of the conversation history, system prompt, and current
    message is too large for the model to process.
    """

    pass

LlamaCppModel

Bases: Model

llama.cpp model provider implementation.

Connects to a llama.cpp server running in OpenAI-compatible mode with support for advanced llama.cpp-specific features like grammar constraints, Mirostat sampling, native JSON schema validation, and native multimodal support for audio and image content.

The llama.cpp server must be started with the OpenAI-compatible API enabled: llama-server -m model.gguf --host 0.0.0.0 --port 8080

Example

Basic usage:

model = LlamaCppModel(base_url="http://localhost:8080") model.update_config(params={"temperature": 0.7, "top_k": 40})

Grammar constraints via params:

model.update_config(params={ ... "grammar": ''' ... root ::= answer ... answer ::= "yes" | "no" ... ''' ... })

Advanced sampling:

model.update_config(params={ ... "mirostat": 2, ... "mirostat_lr": 0.1, ... "tfs_z": 0.95, ... "repeat_penalty": 1.1 ... })

Multimodal usage (requires multimodal model like Qwen2.5-Omni):

Audio analysis

audio_content = [{ ... "audio": {"source": {"bytes": audio_bytes}, "format": "wav"}, ... "text": "What do you hear in this audio?" ... }] response = agent(audio_content)

Image analysis

image_content = [{ ... "image": {"source": {"bytes": image_bytes}, "format": "png"}, ... "text": "Describe this image" ... }] response = agent(image_content)

Source code in strands/models/llamacpp.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
class LlamaCppModel(Model):
    """llama.cpp model provider implementation.

    Connects to a llama.cpp server running in OpenAI-compatible mode with
    support for advanced llama.cpp-specific features like grammar constraints,
    Mirostat sampling, native JSON schema validation, and native multimodal
    support for audio and image content.

    The llama.cpp server must be started with the OpenAI-compatible API enabled:
        llama-server -m model.gguf --host 0.0.0.0 --port 8080

    Example:
        Basic usage:
        >>> model = LlamaCppModel(base_url="http://localhost:8080")
        >>> model.update_config(params={"temperature": 0.7, "top_k": 40})

        Grammar constraints via params:
        >>> model.update_config(params={
        ...     "grammar": '''
        ...         root ::= answer
        ...         answer ::= "yes" | "no"
        ...     '''
        ... })

        Advanced sampling:
        >>> model.update_config(params={
        ...     "mirostat": 2,
        ...     "mirostat_lr": 0.1,
        ...     "tfs_z": 0.95,
        ...     "repeat_penalty": 1.1
        ... })

        Multimodal usage (requires multimodal model like Qwen2.5-Omni):
        >>> # Audio analysis
        >>> audio_content = [{
        ...     "audio": {"source": {"bytes": audio_bytes}, "format": "wav"},
        ...     "text": "What do you hear in this audio?"
        ... }]
        >>> response = agent(audio_content)

        >>> # Image analysis
        >>> image_content = [{
        ...     "image": {"source": {"bytes": image_bytes}, "format": "png"},
        ...     "text": "Describe this image"
        ... }]
        >>> response = agent(image_content)
    """

    class LlamaCppConfig(TypedDict, total=False):
        """Configuration options for llama.cpp models.

        Attributes:
            model_id: Model identifier for the loaded model in llama.cpp server.
                Default is "default" as llama.cpp typically loads a single model.
            params: Model parameters supporting both OpenAI and llama.cpp-specific options.

                OpenAI-compatible parameters:
                - max_tokens: Maximum number of tokens to generate
                - temperature: Sampling temperature (0.0 to 2.0)
                - top_p: Nucleus sampling parameter (0.0 to 1.0)
                - frequency_penalty: Frequency penalty (-2.0 to 2.0)
                - presence_penalty: Presence penalty (-2.0 to 2.0)
                - stop: List of stop sequences
                - seed: Random seed for reproducibility
                - n: Number of completions to generate
                - logprobs: Include log probabilities in output
                - top_logprobs: Number of top log probabilities to include

                llama.cpp-specific parameters:
                - repeat_penalty: Penalize repeat tokens (1.0 = no penalty)
                - top_k: Top-k sampling (0 = disabled)
                - min_p: Min-p sampling threshold (0.0 to 1.0)
                - typical_p: Typical-p sampling (0.0 to 1.0)
                - tfs_z: Tail-free sampling parameter (0.0 to 1.0)
                - top_a: Top-a sampling parameter
                - mirostat: Mirostat sampling mode (0, 1, or 2)
                - mirostat_lr: Mirostat learning rate
                - mirostat_ent: Mirostat target entropy
                - grammar: GBNF grammar string for constrained generation
                - json_schema: JSON schema for structured output
                - penalty_last_n: Number of tokens to consider for penalties
                - n_probs: Number of probabilities to return per token
                - min_keep: Minimum tokens to keep in sampling
                - ignore_eos: Ignore end-of-sequence token
                - logit_bias: Token ID to bias mapping
                - cache_prompt: Cache the prompt for faster generation
                - slot_id: Slot ID for parallel inference
                - samplers: Custom sampler order
        """

        model_id: str
        params: Optional[dict[str, Any]]

    def __init__(
        self,
        base_url: str = "http://localhost:8080",
        timeout: Optional[Union[float, tuple[float, float]]] = None,
        **model_config: Unpack[LlamaCppConfig],
    ) -> None:
        """Initialize llama.cpp provider instance.

        Args:
            base_url: Base URL for the llama.cpp server.
                Default is "http://localhost:8080" for local server.
            timeout: Request timeout in seconds. Can be float or tuple of
                (connect, read) timeouts.
            **model_config: Configuration options for the llama.cpp model.
        """
        validate_config_keys(model_config, self.LlamaCppConfig)

        # Set default model_id if not provided
        if "model_id" not in model_config:
            model_config["model_id"] = "default"

        self.base_url = base_url.rstrip("/")
        self.config = dict(model_config)
        logger.debug("config=<%s> | initializing", self.config)

        # Configure HTTP client
        if isinstance(timeout, tuple):
            # Convert tuple to httpx.Timeout object
            timeout_obj = httpx.Timeout(
                connect=timeout[0] if len(timeout) > 0 else None,
                read=timeout[1] if len(timeout) > 1 else None,
                write=timeout[2] if len(timeout) > 2 else None,
                pool=timeout[3] if len(timeout) > 3 else None,
            )
        else:
            timeout_obj = httpx.Timeout(timeout or 30.0)

        self.client = httpx.AsyncClient(
            base_url=self.base_url,
            timeout=timeout_obj,
        )

    @override
    def update_config(self, **model_config: Unpack[LlamaCppConfig]) -> None:  # type: ignore[override]
        """Update the llama.cpp model configuration with provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        validate_config_keys(model_config, self.LlamaCppConfig)
        self.config.update(model_config)

    @override
    def get_config(self) -> LlamaCppConfig:
        """Get the llama.cpp model configuration.

        Returns:
            The llama.cpp model configuration.
        """
        return self.config  # type: ignore[return-value]

    def _format_message_content(self, content: Union[ContentBlock, Dict[str, Any]]) -> dict[str, Any]:
        """Format a content block for llama.cpp.

        Args:
            content: Message content.

        Returns:
            llama.cpp compatible content block.

        Raises:
            TypeError: If the content block type cannot be converted to a compatible format.
        """
        if "document" in content:
            mime_type = mimetypes.types_map.get(f".{content['document']['format']}", "application/octet-stream")
            file_data = base64.b64encode(content["document"]["source"]["bytes"]).decode("utf-8")
            return {
                "file": {
                    "file_data": f"data:{mime_type};base64,{file_data}",
                    "filename": content["document"]["name"],
                },
                "type": "file",
            }

        if "image" in content:
            mime_type = mimetypes.types_map.get(f".{content['image']['format']}", "application/octet-stream")
            image_data = base64.b64encode(content["image"]["source"]["bytes"]).decode("utf-8")
            return {
                "image_url": {
                    "detail": "auto",
                    "format": mime_type,
                    "url": f"data:{mime_type};base64,{image_data}",
                },
                "type": "image_url",
            }

        # Handle audio content (not in standard ContentBlock but supported by llama.cpp)
        if "audio" in content:
            audio_content = cast(Dict[str, Any], content)
            audio_data = base64.b64encode(audio_content["audio"]["source"]["bytes"]).decode("utf-8")
            audio_format = audio_content["audio"].get("format", "wav")
            return {
                "type": "input_audio",
                "input_audio": {"data": audio_data, "format": audio_format},
            }

        if "text" in content:
            return {"text": content["text"], "type": "text"}

        raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

    def _format_tool_call(self, tool_use: dict[str, Any]) -> dict[str, Any]:
        """Format a tool call for llama.cpp.

        Args:
            tool_use: Tool use requested by the model.

        Returns:
            llama.cpp compatible tool call.
        """
        return {
            "function": {
                "arguments": json.dumps(tool_use["input"]),
                "name": tool_use["name"],
            },
            "id": tool_use["toolUseId"],
            "type": "function",
        }

    def _format_tool_message(self, tool_result: dict[str, Any]) -> dict[str, Any]:
        """Format a tool message for llama.cpp.

        Args:
            tool_result: Tool result collected from a tool execution.

        Returns:
            llama.cpp compatible tool message.
        """
        contents = [
            {"text": json.dumps(content["json"])} if "json" in content else content
            for content in tool_result["content"]
        ]

        return {
            "role": "tool",
            "tool_call_id": tool_result["toolUseId"],
            "content": [self._format_message_content(content) for content in contents],
        }

    def _format_messages(self, messages: Messages, system_prompt: Optional[str] = None) -> list[dict[str, Any]]:
        """Format messages for llama.cpp.

        Args:
            messages: List of message objects to be processed.
            system_prompt: System prompt to provide context to the model.

        Returns:
            Formatted messages array compatible with llama.cpp.
        """
        formatted_messages: list[dict[str, Any]] = []

        # Add system prompt if provided
        if system_prompt:
            formatted_messages.append({"role": "system", "content": system_prompt})

        for message in messages:
            contents = message["content"]

            formatted_contents = [
                self._format_message_content(content)
                for content in contents
                if not any(block_type in content for block_type in ["toolResult", "toolUse"])
            ]
            formatted_tool_calls = [
                self._format_tool_call(
                    {
                        "name": content["toolUse"]["name"],
                        "input": content["toolUse"]["input"],
                        "toolUseId": content["toolUse"]["toolUseId"],
                    }
                )
                for content in contents
                if "toolUse" in content
            ]
            formatted_tool_messages = [
                self._format_tool_message(
                    {
                        "toolUseId": content["toolResult"]["toolUseId"],
                        "content": content["toolResult"]["content"],
                    }
                )
                for content in contents
                if "toolResult" in content
            ]

            formatted_message = {
                "role": message["role"],
                "content": formatted_contents,
                **({} if not formatted_tool_calls else {"tool_calls": formatted_tool_calls}),
            }
            formatted_messages.append(formatted_message)
            formatted_messages.extend(formatted_tool_messages)

        return [message for message in formatted_messages if message["content"] or "tool_calls" in message]

    def _format_request(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
    ) -> dict[str, Any]:
        """Format a request for the llama.cpp server.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            A request formatted for llama.cpp server's OpenAI-compatible API.
        """
        # Separate OpenAI-compatible and llama.cpp-specific parameters
        request = {
            "messages": self._format_messages(messages, system_prompt),
            "model": self.config["model_id"],
            "stream": True,
            "stream_options": {"include_usage": True},
            "tools": [
                {
                    "type": "function",
                    "function": {
                        "name": tool_spec["name"],
                        "description": tool_spec["description"],
                        "parameters": tool_spec["inputSchema"]["json"],
                    },
                }
                for tool_spec in tool_specs or []
            ],
        }

        # Handle parameters if provided
        params = self.config.get("params")
        if params and isinstance(params, dict):
            # Grammar and json_schema go directly in request body for llama.cpp server
            if "grammar" in params:
                request["grammar"] = params["grammar"]
            if "json_schema" in params:
                request["json_schema"] = params["json_schema"]

            # llama.cpp-specific parameters that must be passed via extra_body
            # NOTE: grammar and json_schema are NOT in this set because llama.cpp server
            # expects them directly in the request body for proper constraint application
            llamacpp_specific_params = {
                "repeat_penalty",
                "top_k",
                "min_p",
                "typical_p",
                "tfs_z",
                "top_a",
                "mirostat",
                "mirostat_lr",
                "mirostat_ent",
                "penalty_last_n",
                "n_probs",
                "min_keep",
                "ignore_eos",
                "logit_bias",
                "cache_prompt",
                "slot_id",
                "samplers",
            }

            # Standard OpenAI parameters that go directly in the request
            openai_params = {
                "temperature",
                "max_tokens",
                "top_p",
                "frequency_penalty",
                "presence_penalty",
                "stop",
                "seed",
                "n",
                "logprobs",
                "top_logprobs",
                "response_format",
            }

            # Add OpenAI parameters directly to request
            for param, value in params.items():
                if param in openai_params:
                    request[param] = value

            # Collect llama.cpp-specific parameters for extra_body
            extra_body: Dict[str, Any] = {}
            for param, value in params.items():
                if param in llamacpp_specific_params:
                    extra_body[param] = value

            # Add extra_body if we have llama.cpp-specific parameters
            if extra_body:
                request["extra_body"] = extra_body

        return request

    def _format_chunk(self, event: dict[str, Any]) -> StreamEvent:
        """Format a llama.cpp response event into a standardized message chunk.

        Args:
            event: A response event from the llama.cpp server.

        Returns:
            The formatted chunk.

        Raises:
            RuntimeError: If chunk_type is not recognized.
        """
        match event["chunk_type"]:
            case "message_start":
                return {"messageStart": {"role": "assistant"}}

            case "content_start":
                if event["data_type"] == "tool":
                    return {
                        "contentBlockStart": {
                            "start": {
                                "toolUse": {
                                    "name": event["data"].function.name,
                                    "toolUseId": event["data"].id,
                                }
                            }
                        }
                    }
                return {"contentBlockStart": {"start": {}}}

            case "content_delta":
                if event["data_type"] == "tool":
                    return {
                        "contentBlockDelta": {"delta": {"toolUse": {"input": event["data"].function.arguments or ""}}}
                    }
                if event["data_type"] == "reasoning_content":
                    return {"contentBlockDelta": {"delta": {"reasoningContent": {"text": event["data"]}}}}
                return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

            case "content_stop":
                return {"contentBlockStop": {}}

            case "message_stop":
                match event["data"]:
                    case "tool_calls":
                        return {"messageStop": {"stopReason": "tool_use"}}
                    case "length":
                        return {"messageStop": {"stopReason": "max_tokens"}}
                    case _:
                        return {"messageStop": {"stopReason": "end_turn"}}

            case "metadata":
                return {
                    "metadata": {
                        "usage": {
                            "inputTokens": event["data"].prompt_tokens,
                            "outputTokens": event["data"].completion_tokens,
                            "totalTokens": event["data"].total_tokens,
                        },
                        "metrics": {
                            "latencyMs": event.get("latency_ms", 0),
                        },
                    },
                }

            case _:
                raise RuntimeError(f"chunk_type=<{event['chunk_type']}> | unknown type")

    @override
    async def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the llama.cpp model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
                interface consistency but is currently ignored for this model provider.**
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ContextWindowOverflowException: When the context window is exceeded.
            ModelThrottledException: When the llama.cpp server is overloaded.
        """
        warn_on_tool_choice_not_supported(tool_choice)

        # Track request start time for latency calculation
        start_time = time.perf_counter()

        try:
            logger.debug("formatting request")
            request = self._format_request(messages, tool_specs, system_prompt)
            logger.debug("request=<%s>", request)

            logger.debug("invoking model")
            response = await self.client.post("/v1/chat/completions", json=request)
            response.raise_for_status()

            logger.debug("got response from model")
            yield self._format_chunk({"chunk_type": "message_start"})
            yield self._format_chunk({"chunk_type": "content_start", "data_type": "text"})

            tool_calls: Dict[int, list] = {}
            usage_data = None
            finish_reason = None

            async for line in response.aiter_lines():
                if not line.strip() or not line.startswith("data: "):
                    continue

                data_content = line[6:]  # Remove "data: " prefix
                if data_content.strip() == "[DONE]":
                    break

                try:
                    event = json.loads(data_content)
                except json.JSONDecodeError:
                    continue

                # Handle usage information
                if "usage" in event:
                    usage_data = event["usage"]
                    continue

                if not event.get("choices"):
                    continue

                choice = event["choices"][0]
                delta = choice.get("delta", {})

                # Handle content deltas
                if "content" in delta and delta["content"]:
                    yield self._format_chunk(
                        {
                            "chunk_type": "content_delta",
                            "data_type": "text",
                            "data": delta["content"],
                        }
                    )

                # Handle tool calls
                if "tool_calls" in delta:
                    for tool_call in delta["tool_calls"]:
                        index = tool_call["index"]
                        if index not in tool_calls:
                            tool_calls[index] = []
                        tool_calls[index].append(tool_call)

                # Check for finish reason
                if choice.get("finish_reason"):
                    finish_reason = choice.get("finish_reason")
                    break

            yield self._format_chunk({"chunk_type": "content_stop"})

            # Process tool calls
            for tool_deltas in tool_calls.values():
                first_delta = tool_deltas[0]
                yield self._format_chunk(
                    {
                        "chunk_type": "content_start",
                        "data_type": "tool",
                        "data": type(
                            "ToolCall",
                            (),
                            {
                                "function": type(
                                    "Function",
                                    (),
                                    {
                                        "name": first_delta.get("function", {}).get("name", ""),
                                    },
                                )(),
                                "id": first_delta.get("id", ""),
                            },
                        )(),
                    }
                )

                for tool_delta in tool_deltas:
                    yield self._format_chunk(
                        {
                            "chunk_type": "content_delta",
                            "data_type": "tool",
                            "data": type(
                                "ToolCall",
                                (),
                                {
                                    "function": type(
                                        "Function",
                                        (),
                                        {
                                            "arguments": tool_delta.get("function", {}).get("arguments", ""),
                                        },
                                    )(),
                                },
                            )(),
                        }
                    )

                yield self._format_chunk({"chunk_type": "content_stop"})

            # Send stop reason
            if finish_reason == "tool_calls" or tool_calls:
                stop_reason = "tool_calls"  # Changed from "tool_use" to match format_chunk expectations
            else:
                stop_reason = finish_reason or "end_turn"
            yield self._format_chunk({"chunk_type": "message_stop", "data": stop_reason})

            # Send usage metadata if available
            if usage_data:
                # Calculate latency
                latency_ms = int((time.perf_counter() - start_time) * 1000)
                yield self._format_chunk(
                    {
                        "chunk_type": "metadata",
                        "data": type(
                            "Usage",
                            (),
                            {
                                "prompt_tokens": usage_data.get("prompt_tokens", 0),
                                "completion_tokens": usage_data.get("completion_tokens", 0),
                                "total_tokens": usage_data.get("total_tokens", 0),
                            },
                        )(),
                        "latency_ms": latency_ms,
                    }
                )

            logger.debug("finished streaming response from model")

        except httpx.HTTPStatusError as e:
            if e.response.status_code == 400:
                # Parse error response from llama.cpp server
                try:
                    error_data = e.response.json()
                    error_msg = str(error_data.get("error", {}).get("message", str(error_data)))
                except (json.JSONDecodeError, KeyError, AttributeError):
                    error_msg = e.response.text

                # Check for context overflow by looking for specific error indicators
                if any(term in error_msg.lower() for term in ["context", "kv cache", "slot"]):
                    raise ContextWindowOverflowException(f"Context window exceeded: {error_msg}") from e
            elif e.response.status_code == 503:
                raise ModelThrottledException("llama.cpp server is busy or overloaded") from e
            raise
        except Exception as e:
            # Handle other potential errors like rate limiting
            error_msg = str(e).lower()
            if "rate" in error_msg or "429" in str(e):
                raise ModelThrottledException(str(e)) from e
            raise

    @override
    async def structured_output(
        self,
        output_model: Type[T],
        prompt: Messages,
        system_prompt: Optional[str] = None,
        **kwargs: Any,
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output using llama.cpp's native JSON schema support.

        This implementation uses llama.cpp's json_schema parameter to constrain
        the model output to valid JSON matching the provided schema.

        Args:
            output_model: The Pydantic model defining the expected output structure.
            prompt: The prompt messages to use for generation.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            json.JSONDecodeError: If the model output is not valid JSON.
            pydantic.ValidationError: If the output doesn't match the model schema.
        """
        # Get the JSON schema from the Pydantic model
        schema = output_model.model_json_schema()

        # Store current params to restore later
        params = self.config.get("params", {})
        original_params = dict(params) if isinstance(params, dict) else {}

        try:
            # Configure for JSON output with schema constraint
            params = self.config.get("params", {})
            if not isinstance(params, dict):
                params = {}
            params["json_schema"] = schema
            params["cache_prompt"] = True
            self.config["params"] = params

            # Collect the response
            response_text = ""
            async for event in self.stream(prompt, system_prompt=system_prompt, **kwargs):
                if "contentBlockDelta" in event:
                    delta = event["contentBlockDelta"]["delta"]
                    if "text" in delta:
                        response_text += delta["text"]
                # Forward events to caller
                yield cast(Dict[str, Union[T, Any]], event)

            # Parse and validate the JSON response
            data = json.loads(response_text.strip())
            output_instance = output_model(**data)
            yield {"output": output_instance}

        finally:
            # Restore original configuration
            self.config["params"] = original_params

LlamaCppConfig

Bases: TypedDict

Configuration options for llama.cpp models.

Attributes:

Name Type Description
model_id str

Model identifier for the loaded model in llama.cpp server. Default is "default" as llama.cpp typically loads a single model.

params Optional[dict[str, Any]]

Model parameters supporting both OpenAI and llama.cpp-specific options.

OpenAI-compatible parameters: - max_tokens: Maximum number of tokens to generate - temperature: Sampling temperature (0.0 to 2.0) - top_p: Nucleus sampling parameter (0.0 to 1.0) - frequency_penalty: Frequency penalty (-2.0 to 2.0) - presence_penalty: Presence penalty (-2.0 to 2.0) - stop: List of stop sequences - seed: Random seed for reproducibility - n: Number of completions to generate - logprobs: Include log probabilities in output - top_logprobs: Number of top log probabilities to include

llama.cpp-specific parameters: - repeat_penalty: Penalize repeat tokens (1.0 = no penalty) - top_k: Top-k sampling (0 = disabled) - min_p: Min-p sampling threshold (0.0 to 1.0) - typical_p: Typical-p sampling (0.0 to 1.0) - tfs_z: Tail-free sampling parameter (0.0 to 1.0) - top_a: Top-a sampling parameter - mirostat: Mirostat sampling mode (0, 1, or 2) - mirostat_lr: Mirostat learning rate - mirostat_ent: Mirostat target entropy - grammar: GBNF grammar string for constrained generation - json_schema: JSON schema for structured output - penalty_last_n: Number of tokens to consider for penalties - n_probs: Number of probabilities to return per token - min_keep: Minimum tokens to keep in sampling - ignore_eos: Ignore end-of-sequence token - logit_bias: Token ID to bias mapping - cache_prompt: Cache the prompt for faster generation - slot_id: Slot ID for parallel inference - samplers: Custom sampler order

Source code in strands/models/llamacpp.py
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
class LlamaCppConfig(TypedDict, total=False):
    """Configuration options for llama.cpp models.

    Attributes:
        model_id: Model identifier for the loaded model in llama.cpp server.
            Default is "default" as llama.cpp typically loads a single model.
        params: Model parameters supporting both OpenAI and llama.cpp-specific options.

            OpenAI-compatible parameters:
            - max_tokens: Maximum number of tokens to generate
            - temperature: Sampling temperature (0.0 to 2.0)
            - top_p: Nucleus sampling parameter (0.0 to 1.0)
            - frequency_penalty: Frequency penalty (-2.0 to 2.0)
            - presence_penalty: Presence penalty (-2.0 to 2.0)
            - stop: List of stop sequences
            - seed: Random seed for reproducibility
            - n: Number of completions to generate
            - logprobs: Include log probabilities in output
            - top_logprobs: Number of top log probabilities to include

            llama.cpp-specific parameters:
            - repeat_penalty: Penalize repeat tokens (1.0 = no penalty)
            - top_k: Top-k sampling (0 = disabled)
            - min_p: Min-p sampling threshold (0.0 to 1.0)
            - typical_p: Typical-p sampling (0.0 to 1.0)
            - tfs_z: Tail-free sampling parameter (0.0 to 1.0)
            - top_a: Top-a sampling parameter
            - mirostat: Mirostat sampling mode (0, 1, or 2)
            - mirostat_lr: Mirostat learning rate
            - mirostat_ent: Mirostat target entropy
            - grammar: GBNF grammar string for constrained generation
            - json_schema: JSON schema for structured output
            - penalty_last_n: Number of tokens to consider for penalties
            - n_probs: Number of probabilities to return per token
            - min_keep: Minimum tokens to keep in sampling
            - ignore_eos: Ignore end-of-sequence token
            - logit_bias: Token ID to bias mapping
            - cache_prompt: Cache the prompt for faster generation
            - slot_id: Slot ID for parallel inference
            - samplers: Custom sampler order
    """

    model_id: str
    params: Optional[dict[str, Any]]

__init__(base_url='http://localhost:8080', timeout=None, **model_config)

Initialize llama.cpp provider instance.

Parameters:

Name Type Description Default
base_url str

Base URL for the llama.cpp server. Default is "http://localhost:8080" for local server.

'http://localhost:8080'
timeout Optional[Union[float, tuple[float, float]]]

Request timeout in seconds. Can be float or tuple of (connect, read) timeouts.

None
**model_config Unpack[LlamaCppConfig]

Configuration options for the llama.cpp model.

{}
Source code in strands/models/llamacpp.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def __init__(
    self,
    base_url: str = "http://localhost:8080",
    timeout: Optional[Union[float, tuple[float, float]]] = None,
    **model_config: Unpack[LlamaCppConfig],
) -> None:
    """Initialize llama.cpp provider instance.

    Args:
        base_url: Base URL for the llama.cpp server.
            Default is "http://localhost:8080" for local server.
        timeout: Request timeout in seconds. Can be float or tuple of
            (connect, read) timeouts.
        **model_config: Configuration options for the llama.cpp model.
    """
    validate_config_keys(model_config, self.LlamaCppConfig)

    # Set default model_id if not provided
    if "model_id" not in model_config:
        model_config["model_id"] = "default"

    self.base_url = base_url.rstrip("/")
    self.config = dict(model_config)
    logger.debug("config=<%s> | initializing", self.config)

    # Configure HTTP client
    if isinstance(timeout, tuple):
        # Convert tuple to httpx.Timeout object
        timeout_obj = httpx.Timeout(
            connect=timeout[0] if len(timeout) > 0 else None,
            read=timeout[1] if len(timeout) > 1 else None,
            write=timeout[2] if len(timeout) > 2 else None,
            pool=timeout[3] if len(timeout) > 3 else None,
        )
    else:
        timeout_obj = httpx.Timeout(timeout or 30.0)

    self.client = httpx.AsyncClient(
        base_url=self.base_url,
        timeout=timeout_obj,
    )

get_config()

Get the llama.cpp model configuration.

Returns:

Type Description
LlamaCppConfig

The llama.cpp model configuration.

Source code in strands/models/llamacpp.py
190
191
192
193
194
195
196
197
@override
def get_config(self) -> LlamaCppConfig:
    """Get the llama.cpp model configuration.

    Returns:
        The llama.cpp model configuration.
    """
    return self.config  # type: ignore[return-value]

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, **kwargs) async

Stream conversation with the llama.cpp model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation. Note: This parameter is accepted for interface consistency but is currently ignored for this model provider.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Formatted message chunks from the model.

Raises:

Type Description
ContextWindowOverflowException

When the context window is exceeded.

ModelThrottledException

When the llama.cpp server is overloaded.

Source code in strands/models/llamacpp.py
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
@override
async def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the llama.cpp model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
            interface consistency but is currently ignored for this model provider.**
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ContextWindowOverflowException: When the context window is exceeded.
        ModelThrottledException: When the llama.cpp server is overloaded.
    """
    warn_on_tool_choice_not_supported(tool_choice)

    # Track request start time for latency calculation
    start_time = time.perf_counter()

    try:
        logger.debug("formatting request")
        request = self._format_request(messages, tool_specs, system_prompt)
        logger.debug("request=<%s>", request)

        logger.debug("invoking model")
        response = await self.client.post("/v1/chat/completions", json=request)
        response.raise_for_status()

        logger.debug("got response from model")
        yield self._format_chunk({"chunk_type": "message_start"})
        yield self._format_chunk({"chunk_type": "content_start", "data_type": "text"})

        tool_calls: Dict[int, list] = {}
        usage_data = None
        finish_reason = None

        async for line in response.aiter_lines():
            if not line.strip() or not line.startswith("data: "):
                continue

            data_content = line[6:]  # Remove "data: " prefix
            if data_content.strip() == "[DONE]":
                break

            try:
                event = json.loads(data_content)
            except json.JSONDecodeError:
                continue

            # Handle usage information
            if "usage" in event:
                usage_data = event["usage"]
                continue

            if not event.get("choices"):
                continue

            choice = event["choices"][0]
            delta = choice.get("delta", {})

            # Handle content deltas
            if "content" in delta and delta["content"]:
                yield self._format_chunk(
                    {
                        "chunk_type": "content_delta",
                        "data_type": "text",
                        "data": delta["content"],
                    }
                )

            # Handle tool calls
            if "tool_calls" in delta:
                for tool_call in delta["tool_calls"]:
                    index = tool_call["index"]
                    if index not in tool_calls:
                        tool_calls[index] = []
                    tool_calls[index].append(tool_call)

            # Check for finish reason
            if choice.get("finish_reason"):
                finish_reason = choice.get("finish_reason")
                break

        yield self._format_chunk({"chunk_type": "content_stop"})

        # Process tool calls
        for tool_deltas in tool_calls.values():
            first_delta = tool_deltas[0]
            yield self._format_chunk(
                {
                    "chunk_type": "content_start",
                    "data_type": "tool",
                    "data": type(
                        "ToolCall",
                        (),
                        {
                            "function": type(
                                "Function",
                                (),
                                {
                                    "name": first_delta.get("function", {}).get("name", ""),
                                },
                            )(),
                            "id": first_delta.get("id", ""),
                        },
                    )(),
                }
            )

            for tool_delta in tool_deltas:
                yield self._format_chunk(
                    {
                        "chunk_type": "content_delta",
                        "data_type": "tool",
                        "data": type(
                            "ToolCall",
                            (),
                            {
                                "function": type(
                                    "Function",
                                    (),
                                    {
                                        "arguments": tool_delta.get("function", {}).get("arguments", ""),
                                    },
                                )(),
                            },
                        )(),
                    }
                )

            yield self._format_chunk({"chunk_type": "content_stop"})

        # Send stop reason
        if finish_reason == "tool_calls" or tool_calls:
            stop_reason = "tool_calls"  # Changed from "tool_use" to match format_chunk expectations
        else:
            stop_reason = finish_reason or "end_turn"
        yield self._format_chunk({"chunk_type": "message_stop", "data": stop_reason})

        # Send usage metadata if available
        if usage_data:
            # Calculate latency
            latency_ms = int((time.perf_counter() - start_time) * 1000)
            yield self._format_chunk(
                {
                    "chunk_type": "metadata",
                    "data": type(
                        "Usage",
                        (),
                        {
                            "prompt_tokens": usage_data.get("prompt_tokens", 0),
                            "completion_tokens": usage_data.get("completion_tokens", 0),
                            "total_tokens": usage_data.get("total_tokens", 0),
                        },
                    )(),
                    "latency_ms": latency_ms,
                }
            )

        logger.debug("finished streaming response from model")

    except httpx.HTTPStatusError as e:
        if e.response.status_code == 400:
            # Parse error response from llama.cpp server
            try:
                error_data = e.response.json()
                error_msg = str(error_data.get("error", {}).get("message", str(error_data)))
            except (json.JSONDecodeError, KeyError, AttributeError):
                error_msg = e.response.text

            # Check for context overflow by looking for specific error indicators
            if any(term in error_msg.lower() for term in ["context", "kv cache", "slot"]):
                raise ContextWindowOverflowException(f"Context window exceeded: {error_msg}") from e
        elif e.response.status_code == 503:
            raise ModelThrottledException("llama.cpp server is busy or overloaded") from e
        raise
    except Exception as e:
        # Handle other potential errors like rate limiting
        error_msg = str(e).lower()
        if "rate" in error_msg or "429" in str(e):
            raise ModelThrottledException(str(e)) from e
        raise

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output using llama.cpp's native JSON schema support.

This implementation uses llama.cpp's json_schema parameter to constrain the model output to valid JSON matching the provided schema.

Parameters:

Name Type Description Default
output_model Type[T]

The Pydantic model defining the expected output structure.

required
prompt Messages

The prompt messages to use for generation.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
JSONDecodeError

If the model output is not valid JSON.

ValidationError

If the output doesn't match the model schema.

Source code in strands/models/llamacpp.py
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
@override
async def structured_output(
    self,
    output_model: Type[T],
    prompt: Messages,
    system_prompt: Optional[str] = None,
    **kwargs: Any,
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output using llama.cpp's native JSON schema support.

    This implementation uses llama.cpp's json_schema parameter to constrain
    the model output to valid JSON matching the provided schema.

    Args:
        output_model: The Pydantic model defining the expected output structure.
        prompt: The prompt messages to use for generation.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        json.JSONDecodeError: If the model output is not valid JSON.
        pydantic.ValidationError: If the output doesn't match the model schema.
    """
    # Get the JSON schema from the Pydantic model
    schema = output_model.model_json_schema()

    # Store current params to restore later
    params = self.config.get("params", {})
    original_params = dict(params) if isinstance(params, dict) else {}

    try:
        # Configure for JSON output with schema constraint
        params = self.config.get("params", {})
        if not isinstance(params, dict):
            params = {}
        params["json_schema"] = schema
        params["cache_prompt"] = True
        self.config["params"] = params

        # Collect the response
        response_text = ""
        async for event in self.stream(prompt, system_prompt=system_prompt, **kwargs):
            if "contentBlockDelta" in event:
                delta = event["contentBlockDelta"]["delta"]
                if "text" in delta:
                    response_text += delta["text"]
            # Forward events to caller
            yield cast(Dict[str, Union[T, Any]], event)

        # Parse and validate the JSON response
        data = json.loads(response_text.strip())
        output_instance = output_model(**data)
        yield {"output": output_instance}

    finally:
        # Restore original configuration
        self.config["params"] = original_params

update_config(**model_config)

Update the llama.cpp model configuration with provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[LlamaCppConfig]

Configuration overrides.

{}
Source code in strands/models/llamacpp.py
180
181
182
183
184
185
186
187
188
@override
def update_config(self, **model_config: Unpack[LlamaCppConfig]) -> None:  # type: ignore[override]
    """Update the llama.cpp model configuration with provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    validate_config_keys(model_config, self.LlamaCppConfig)
    self.config.update(model_config)

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
35
36
37
38
39
40
41
42
43
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
25
26
27
28
29
30
31
32
33
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

ModelThrottledException

Bases: Exception

Exception raised when the model is throttled.

This exception is raised when the model is throttled by the service. This typically occurs when the service is throttling the requests from the client.

Source code in strands/types/exceptions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ModelThrottledException(Exception):
    """Exception raised when the model is throttled.

    This exception is raised when the model is throttled by the service. This typically occurs when the service is
    throttling the requests from the client.
    """

    def __init__(self, message: str) -> None:
        """Initialize exception.

        Args:
            message: The message from the service that describes the throttling.
        """
        self.message = message
        super().__init__(message)

    pass

__init__(message)

Initialize exception.

Parameters:

Name Type Description Default
message str

The message from the service that describes the throttling.

required
Source code in strands/types/exceptions.py
62
63
64
65
66
67
68
69
def __init__(self, message: str) -> None:
    """Initialize exception.

    Args:
        message: The message from the service that describes the throttling.
    """
    self.message = message
    super().__init__(message)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class Type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def validate_config_keys(config_dict: Mapping[str, Any], config_class: Type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )

warn_on_tool_choice_not_supported(tool_choice)

Emits a warning if a tool choice is provided but not supported by the provider.

Parameters:

Name Type Description Default
tool_choice ToolChoice | None

the tool_choice provided to the provider

required
Source code in strands/models/_validation.py
32
33
34
35
36
37
38
39
40
41
42
def warn_on_tool_choice_not_supported(tool_choice: ToolChoice | None) -> None:
    """Emits a warning if a tool choice is provided but not supported by the provider.

    Args:
        tool_choice: the tool_choice provided to the provider
    """
    if tool_choice:
        warnings.warn(
            "A ToolChoice was provided to this provider but is not supported and will be ignored",
            stacklevel=4,
        )