Skip to content

strands.models.mistral

Mistral AI model provider.

  • Docs: https://docs.mistral.ai/

Messages = List[Message] module-attribute

A list of messages representing a conversation.

StopReason = Literal['content_filtered', 'end_turn', 'guardrail_intervened', 'interrupt', 'max_tokens', 'stop_sequence', 'tool_use'] module-attribute

Reason for the model ending its response generation.

  • "content_filtered": Content was filtered due to policy violation
  • "end_turn": Normal completion of the response
  • "guardrail_intervened": Guardrail system intervened
  • "interrupt": Agent was interrupted for human input
  • "max_tokens": Maximum token limit reached
  • "stop_sequence": Stop sequence encountered
  • "tool_use": Model requested to use a tool

T = TypeVar('T', bound=BaseModel) module-attribute

ToolChoice = Union[ToolChoiceAutoDict, ToolChoiceAnyDict, ToolChoiceToolDict] module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

logger = logging.getLogger(__name__) module-attribute

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

MistralModel

Bases: Model

Mistral API model provider implementation.

The implementation handles Mistral-specific features such as:

  • Chat and text completions
  • Streaming responses
  • Tool/function calling
  • System prompts
Source code in strands/models/mistral.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
class MistralModel(Model):
    """Mistral API model provider implementation.

    The implementation handles Mistral-specific features such as:

    - Chat and text completions
    - Streaming responses
    - Tool/function calling
    - System prompts
    """

    class MistralConfig(TypedDict, total=False):
        """Configuration parameters for Mistral models.

        Attributes:
            model_id: Mistral model ID (e.g., "mistral-large-latest", "mistral-medium-latest").
            max_tokens: Maximum number of tokens to generate in the response.
            temperature: Controls randomness in generation (0.0 to 1.0).
            top_p: Controls diversity via nucleus sampling.
            stream: Whether to enable streaming responses.
        """

        model_id: str
        max_tokens: Optional[int]
        temperature: Optional[float]
        top_p: Optional[float]
        stream: Optional[bool]

    def __init__(
        self,
        api_key: Optional[str] = None,
        *,
        client_args: Optional[dict[str, Any]] = None,
        **model_config: Unpack[MistralConfig],
    ) -> None:
        """Initialize provider instance.

        Args:
            api_key: Mistral API key. If not provided, will use MISTRAL_API_KEY env var.
            client_args: Additional arguments for the Mistral client.
            **model_config: Configuration options for the Mistral model.
        """
        if "temperature" in model_config and model_config["temperature"] is not None:
            temp = model_config["temperature"]
            if not 0.0 <= temp <= 1.0:
                raise ValueError(f"temperature must be between 0.0 and 1.0, got {temp}")
            # Warn if temperature is above recommended range
            if temp > 0.7:
                logger.warning(
                    "temperature=%s is above the recommended range (0.0-0.7). "
                    "High values may produce unpredictable results.",
                    temp,
                )

        if "top_p" in model_config and model_config["top_p"] is not None:
            top_p = model_config["top_p"]
            if not 0.0 <= top_p <= 1.0:
                raise ValueError(f"top_p must be between 0.0 and 1.0, got {top_p}")

        validate_config_keys(model_config, self.MistralConfig)
        self.config = MistralModel.MistralConfig(**model_config)

        # Set default stream to True if not specified
        if "stream" not in self.config:
            self.config["stream"] = True

        logger.debug("config=<%s> | initializing", self.config)

        self.client_args = client_args or {}
        if api_key:
            self.client_args["api_key"] = api_key

    @override
    def update_config(self, **model_config: Unpack[MistralConfig]) -> None:  # type: ignore
        """Update the Mistral Model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        validate_config_keys(model_config, self.MistralConfig)
        self.config.update(model_config)

    @override
    def get_config(self) -> MistralConfig:
        """Get the Mistral model configuration.

        Returns:
            The Mistral model configuration.
        """
        return self.config

    def _format_request_message_content(self, content: ContentBlock) -> Union[str, dict[str, Any]]:
        """Format a Mistral content block.

        Args:
            content: Message content.

        Returns:
            Mistral formatted content.

        Raises:
            TypeError: If the content block type cannot be converted to a Mistral-compatible format.
        """
        if "text" in content:
            return content["text"]

        if "image" in content:
            image_data = content["image"]

            if "source" in image_data:
                image_bytes = image_data["source"]["bytes"]
                base64_data = base64.b64encode(image_bytes).decode("utf-8")
                format_value = image_data.get("format", "jpeg")
                media_type = f"image/{format_value}"
                return {"type": "image_url", "image_url": f"data:{media_type};base64,{base64_data}"}

            raise TypeError("content_type=<image> | unsupported image format")

        raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

    def _format_request_message_tool_call(self, tool_use: ToolUse) -> dict[str, Any]:
        """Format a Mistral tool call.

        Args:
            tool_use: Tool use requested by the model.

        Returns:
            Mistral formatted tool call.
        """
        return {
            "function": {
                "name": tool_use["name"],
                "arguments": json.dumps(tool_use["input"]),
            },
            "id": tool_use["toolUseId"],
            "type": "function",
        }

    def _format_request_tool_message(self, tool_result: ToolResult) -> dict[str, Any]:
        """Format a Mistral tool message.

        Args:
            tool_result: Tool result collected from a tool execution.

        Returns:
            Mistral formatted tool message.
        """
        content_parts: list[str] = []
        for content in tool_result["content"]:
            if "json" in content:
                content_parts.append(json.dumps(content["json"]))
            elif "text" in content:
                content_parts.append(content["text"])

        return {
            "role": "tool",
            "name": tool_result["toolUseId"].split("_")[0]
            if "_" in tool_result["toolUseId"]
            else tool_result["toolUseId"],
            "content": "\n".join(content_parts),
            "tool_call_id": tool_result["toolUseId"],
        }

    def _format_request_messages(self, messages: Messages, system_prompt: Optional[str] = None) -> list[dict[str, Any]]:
        """Format a Mistral compatible messages array.

        Args:
            messages: List of message objects to be processed by the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            A Mistral compatible messages array.
        """
        formatted_messages: list[dict[str, Any]] = []

        if system_prompt:
            formatted_messages.append({"role": "system", "content": system_prompt})

        for message in messages:
            role = message["role"]
            contents = message["content"]

            text_contents: list[str] = []
            tool_calls: list[dict[str, Any]] = []
            tool_messages: list[dict[str, Any]] = []

            for content in contents:
                if "text" in content:
                    formatted_content = self._format_request_message_content(content)
                    if isinstance(formatted_content, str):
                        text_contents.append(formatted_content)
                elif "toolUse" in content:
                    tool_calls.append(self._format_request_message_tool_call(content["toolUse"]))
                elif "toolResult" in content:
                    tool_messages.append(self._format_request_tool_message(content["toolResult"]))

            if text_contents or tool_calls:
                formatted_message: dict[str, Any] = {
                    "role": role,
                    "content": " ".join(text_contents) if text_contents else "",
                }

                if tool_calls:
                    formatted_message["tool_calls"] = tool_calls

                formatted_messages.append(formatted_message)

            formatted_messages.extend(tool_messages)

        return formatted_messages

    def format_request(
        self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
    ) -> dict[str, Any]:
        """Format a Mistral chat streaming request.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            A Mistral chat streaming request.

        Raises:
            TypeError: If a message contains a content block type that cannot be converted to a Mistral-compatible
                format.
        """
        request: dict[str, Any] = {
            "model": self.config["model_id"],
            "messages": self._format_request_messages(messages, system_prompt),
        }

        if "max_tokens" in self.config:
            request["max_tokens"] = self.config["max_tokens"]
        if "temperature" in self.config:
            request["temperature"] = self.config["temperature"]
        if "top_p" in self.config:
            request["top_p"] = self.config["top_p"]
        if "stream" in self.config:
            request["stream"] = self.config["stream"]

        if tool_specs:
            request["tools"] = [
                {
                    "type": "function",
                    "function": {
                        "name": tool_spec["name"],
                        "description": tool_spec["description"],
                        "parameters": tool_spec["inputSchema"]["json"],
                    },
                }
                for tool_spec in tool_specs
            ]

        return request

    def format_chunk(self, event: dict[str, Any]) -> StreamEvent:
        """Format the Mistral response events into standardized message chunks.

        Args:
            event: A response event from the Mistral model.

        Returns:
            The formatted chunk.

        Raises:
            RuntimeError: If chunk_type is not recognized.
        """
        match event["chunk_type"]:
            case "message_start":
                return {"messageStart": {"role": "assistant"}}

            case "content_start":
                if event["data_type"] == "text":
                    return {"contentBlockStart": {"start": {}}}

                tool_call = event["data"]
                return {
                    "contentBlockStart": {
                        "start": {
                            "toolUse": {
                                "name": tool_call.function.name,
                                "toolUseId": tool_call.id,
                            }
                        }
                    }
                }

            case "content_delta":
                if event["data_type"] == "text":
                    return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

                return {"contentBlockDelta": {"delta": {"toolUse": {"input": event["data"]}}}}

            case "content_stop":
                return {"contentBlockStop": {}}

            case "message_stop":
                reason: StopReason
                if event["data"] == "tool_calls":
                    reason = "tool_use"
                elif event["data"] == "length":
                    reason = "max_tokens"
                else:
                    reason = "end_turn"

                return {"messageStop": {"stopReason": reason}}

            case "metadata":
                usage = event["data"]
                return {
                    "metadata": {
                        "usage": {
                            "inputTokens": usage.prompt_tokens,
                            "outputTokens": usage.completion_tokens,
                            "totalTokens": usage.total_tokens,
                        },
                        "metrics": {
                            "latencyMs": event.get("latency_ms", 0),
                        },
                    },
                }

            case _:
                raise RuntimeError(f"chunk_type=<{event['chunk_type']}> | unknown type")

    def _handle_non_streaming_response(self, response: Any) -> Iterable[dict[str, Any]]:
        """Handle non-streaming response from Mistral API.

        Args:
            response: The non-streaming response from Mistral.

        Yields:
            Formatted events that match the streaming format.
        """
        yield {"chunk_type": "message_start"}

        content_started = False

        if response.choices and response.choices[0].message:
            message = response.choices[0].message

            if hasattr(message, "content") and message.content:
                if not content_started:
                    yield {"chunk_type": "content_start", "data_type": "text"}
                    content_started = True

                yield {"chunk_type": "content_delta", "data_type": "text", "data": message.content}

                yield {"chunk_type": "content_stop"}

            if hasattr(message, "tool_calls") and message.tool_calls:
                for tool_call in message.tool_calls:
                    yield {"chunk_type": "content_start", "data_type": "tool", "data": tool_call}

                    if hasattr(tool_call.function, "arguments"):
                        yield {"chunk_type": "content_delta", "data_type": "tool", "data": tool_call.function.arguments}

                    yield {"chunk_type": "content_stop"}

            finish_reason = response.choices[0].finish_reason if response.choices[0].finish_reason else "stop"
            yield {"chunk_type": "message_stop", "data": finish_reason}

        if hasattr(response, "usage") and response.usage:
            yield {"chunk_type": "metadata", "data": response.usage}

    @override
    async def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the Mistral model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
                interface consistency but is currently ignored for this model provider.**
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests.
        """
        warn_on_tool_choice_not_supported(tool_choice)

        logger.debug("formatting request")
        request = self.format_request(messages, tool_specs, system_prompt)
        logger.debug("request=<%s>", request)

        logger.debug("invoking model")
        try:
            logger.debug("got response from model")
            if not self.config.get("stream", True):
                # Use non-streaming API
                async with mistralai.Mistral(**self.client_args) as client:
                    response = await client.chat.complete_async(**request)
                    for event in self._handle_non_streaming_response(response):
                        yield self.format_chunk(event)

                return

            # Use the streaming API
            async with mistralai.Mistral(**self.client_args) as client:
                stream_response = await client.chat.stream_async(**request)

                yield self.format_chunk({"chunk_type": "message_start"})

                content_started = False
                tool_calls: dict[str, list[Any]] = {}
                accumulated_text = ""

                async for chunk in stream_response:
                    if hasattr(chunk, "data") and hasattr(chunk.data, "choices") and chunk.data.choices:
                        choice = chunk.data.choices[0]

                        if hasattr(choice, "delta"):
                            delta = choice.delta

                            if hasattr(delta, "content") and delta.content:
                                if not content_started:
                                    yield self.format_chunk({"chunk_type": "content_start", "data_type": "text"})
                                    content_started = True

                                yield self.format_chunk(
                                    {"chunk_type": "content_delta", "data_type": "text", "data": delta.content}
                                )
                                accumulated_text += delta.content

                            if hasattr(delta, "tool_calls") and delta.tool_calls:
                                for tool_call in delta.tool_calls:
                                    tool_id = tool_call.id
                                    tool_calls.setdefault(tool_id, []).append(tool_call)

                        if hasattr(choice, "finish_reason") and choice.finish_reason:
                            if content_started:
                                yield self.format_chunk({"chunk_type": "content_stop", "data_type": "text"})

                            for tool_deltas in tool_calls.values():
                                yield self.format_chunk(
                                    {"chunk_type": "content_start", "data_type": "tool", "data": tool_deltas[0]}
                                )

                                for tool_delta in tool_deltas:
                                    if hasattr(tool_delta.function, "arguments"):
                                        yield self.format_chunk(
                                            {
                                                "chunk_type": "content_delta",
                                                "data_type": "tool",
                                                "data": tool_delta.function.arguments,
                                            }
                                        )

                                yield self.format_chunk({"chunk_type": "content_stop", "data_type": "tool"})

                            yield self.format_chunk({"chunk_type": "message_stop", "data": choice.finish_reason})

                            if hasattr(chunk, "usage"):
                                yield self.format_chunk({"chunk_type": "metadata", "data": chunk.usage})

        except Exception as e:
            if "rate" in str(e).lower() or "429" in str(e):
                raise ModelThrottledException(str(e)) from e
            raise

        logger.debug("finished streaming response from model")

    @override
    async def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Returns:
            An instance of the output model with the generated data.

        Raises:
            ValueError: If the response cannot be parsed into the output model.
        """
        tool_spec: ToolSpec = {
            "name": f"extract_{output_model.__name__.lower()}",
            "description": f"Extract structured data in the format of {output_model.__name__}",
            "inputSchema": {"json": output_model.model_json_schema()},
        }

        formatted_request = self.format_request(messages=prompt, tool_specs=[tool_spec], system_prompt=system_prompt)

        formatted_request["tool_choice"] = "any"
        formatted_request["parallel_tool_calls"] = False

        async with mistralai.Mistral(**self.client_args) as client:
            response = await client.chat.complete_async(**formatted_request)

        if response.choices and response.choices[0].message.tool_calls:
            tool_call = response.choices[0].message.tool_calls[0]
            try:
                # Handle both string and dict arguments
                if isinstance(tool_call.function.arguments, str):
                    arguments = json.loads(tool_call.function.arguments)
                else:
                    arguments = tool_call.function.arguments
                yield {"output": output_model(**arguments)}
                return
            except (json.JSONDecodeError, TypeError, ValueError) as e:
                raise ValueError(f"Failed to parse tool call arguments into model: {e}") from e

        raise ValueError("No tool calls found in response")

MistralConfig

Bases: TypedDict

Configuration parameters for Mistral models.

Attributes:

Name Type Description
model_id str

Mistral model ID (e.g., "mistral-large-latest", "mistral-medium-latest").

max_tokens Optional[int]

Maximum number of tokens to generate in the response.

temperature Optional[float]

Controls randomness in generation (0.0 to 1.0).

top_p Optional[float]

Controls diversity via nucleus sampling.

stream Optional[bool]

Whether to enable streaming responses.

Source code in strands/models/mistral.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
class MistralConfig(TypedDict, total=False):
    """Configuration parameters for Mistral models.

    Attributes:
        model_id: Mistral model ID (e.g., "mistral-large-latest", "mistral-medium-latest").
        max_tokens: Maximum number of tokens to generate in the response.
        temperature: Controls randomness in generation (0.0 to 1.0).
        top_p: Controls diversity via nucleus sampling.
        stream: Whether to enable streaming responses.
    """

    model_id: str
    max_tokens: Optional[int]
    temperature: Optional[float]
    top_p: Optional[float]
    stream: Optional[bool]

__init__(api_key=None, *, client_args=None, **model_config)

Initialize provider instance.

Parameters:

Name Type Description Default
api_key Optional[str]

Mistral API key. If not provided, will use MISTRAL_API_KEY env var.

None
client_args Optional[dict[str, Any]]

Additional arguments for the Mistral client.

None
**model_config Unpack[MistralConfig]

Configuration options for the Mistral model.

{}
Source code in strands/models/mistral.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
def __init__(
    self,
    api_key: Optional[str] = None,
    *,
    client_args: Optional[dict[str, Any]] = None,
    **model_config: Unpack[MistralConfig],
) -> None:
    """Initialize provider instance.

    Args:
        api_key: Mistral API key. If not provided, will use MISTRAL_API_KEY env var.
        client_args: Additional arguments for the Mistral client.
        **model_config: Configuration options for the Mistral model.
    """
    if "temperature" in model_config and model_config["temperature"] is not None:
        temp = model_config["temperature"]
        if not 0.0 <= temp <= 1.0:
            raise ValueError(f"temperature must be between 0.0 and 1.0, got {temp}")
        # Warn if temperature is above recommended range
        if temp > 0.7:
            logger.warning(
                "temperature=%s is above the recommended range (0.0-0.7). "
                "High values may produce unpredictable results.",
                temp,
            )

    if "top_p" in model_config and model_config["top_p"] is not None:
        top_p = model_config["top_p"]
        if not 0.0 <= top_p <= 1.0:
            raise ValueError(f"top_p must be between 0.0 and 1.0, got {top_p}")

    validate_config_keys(model_config, self.MistralConfig)
    self.config = MistralModel.MistralConfig(**model_config)

    # Set default stream to True if not specified
    if "stream" not in self.config:
        self.config["stream"] = True

    logger.debug("config=<%s> | initializing", self.config)

    self.client_args = client_args or {}
    if api_key:
        self.client_args["api_key"] = api_key

format_chunk(event)

Format the Mistral response events into standardized message chunks.

Parameters:

Name Type Description Default
event dict[str, Any]

A response event from the Mistral model.

required

Returns:

Type Description
StreamEvent

The formatted chunk.

Raises:

Type Description
RuntimeError

If chunk_type is not recognized.

Source code in strands/models/mistral.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
def format_chunk(self, event: dict[str, Any]) -> StreamEvent:
    """Format the Mistral response events into standardized message chunks.

    Args:
        event: A response event from the Mistral model.

    Returns:
        The formatted chunk.

    Raises:
        RuntimeError: If chunk_type is not recognized.
    """
    match event["chunk_type"]:
        case "message_start":
            return {"messageStart": {"role": "assistant"}}

        case "content_start":
            if event["data_type"] == "text":
                return {"contentBlockStart": {"start": {}}}

            tool_call = event["data"]
            return {
                "contentBlockStart": {
                    "start": {
                        "toolUse": {
                            "name": tool_call.function.name,
                            "toolUseId": tool_call.id,
                        }
                    }
                }
            }

        case "content_delta":
            if event["data_type"] == "text":
                return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

            return {"contentBlockDelta": {"delta": {"toolUse": {"input": event["data"]}}}}

        case "content_stop":
            return {"contentBlockStop": {}}

        case "message_stop":
            reason: StopReason
            if event["data"] == "tool_calls":
                reason = "tool_use"
            elif event["data"] == "length":
                reason = "max_tokens"
            else:
                reason = "end_turn"

            return {"messageStop": {"stopReason": reason}}

        case "metadata":
            usage = event["data"]
            return {
                "metadata": {
                    "usage": {
                        "inputTokens": usage.prompt_tokens,
                        "outputTokens": usage.completion_tokens,
                        "totalTokens": usage.total_tokens,
                    },
                    "metrics": {
                        "latencyMs": event.get("latency_ms", 0),
                    },
                },
            }

        case _:
            raise RuntimeError(f"chunk_type=<{event['chunk_type']}> | unknown type")

format_request(messages, tool_specs=None, system_prompt=None)

Format a Mistral chat streaming request.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None

Returns:

Type Description
dict[str, Any]

A Mistral chat streaming request.

Raises:

Type Description
TypeError

If a message contains a content block type that cannot be converted to a Mistral-compatible format.

Source code in strands/models/mistral.py
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def format_request(
    self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
) -> dict[str, Any]:
    """Format a Mistral chat streaming request.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.

    Returns:
        A Mistral chat streaming request.

    Raises:
        TypeError: If a message contains a content block type that cannot be converted to a Mistral-compatible
            format.
    """
    request: dict[str, Any] = {
        "model": self.config["model_id"],
        "messages": self._format_request_messages(messages, system_prompt),
    }

    if "max_tokens" in self.config:
        request["max_tokens"] = self.config["max_tokens"]
    if "temperature" in self.config:
        request["temperature"] = self.config["temperature"]
    if "top_p" in self.config:
        request["top_p"] = self.config["top_p"]
    if "stream" in self.config:
        request["stream"] = self.config["stream"]

    if tool_specs:
        request["tools"] = [
            {
                "type": "function",
                "function": {
                    "name": tool_spec["name"],
                    "description": tool_spec["description"],
                    "parameters": tool_spec["inputSchema"]["json"],
                },
            }
            for tool_spec in tool_specs
        ]

    return request

get_config()

Get the Mistral model configuration.

Returns:

Type Description
MistralConfig

The Mistral model configuration.

Source code in strands/models/mistral.py
109
110
111
112
113
114
115
116
@override
def get_config(self) -> MistralConfig:
    """Get the Mistral model configuration.

    Returns:
        The Mistral model configuration.
    """
    return self.config

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, **kwargs) async

Stream conversation with the Mistral model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation. Note: This parameter is accepted for interface consistency but is currently ignored for this model provider.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests.

Source code in strands/models/mistral.py
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
@override
async def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the Mistral model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
            interface consistency but is currently ignored for this model provider.**
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests.
    """
    warn_on_tool_choice_not_supported(tool_choice)

    logger.debug("formatting request")
    request = self.format_request(messages, tool_specs, system_prompt)
    logger.debug("request=<%s>", request)

    logger.debug("invoking model")
    try:
        logger.debug("got response from model")
        if not self.config.get("stream", True):
            # Use non-streaming API
            async with mistralai.Mistral(**self.client_args) as client:
                response = await client.chat.complete_async(**request)
                for event in self._handle_non_streaming_response(response):
                    yield self.format_chunk(event)

            return

        # Use the streaming API
        async with mistralai.Mistral(**self.client_args) as client:
            stream_response = await client.chat.stream_async(**request)

            yield self.format_chunk({"chunk_type": "message_start"})

            content_started = False
            tool_calls: dict[str, list[Any]] = {}
            accumulated_text = ""

            async for chunk in stream_response:
                if hasattr(chunk, "data") and hasattr(chunk.data, "choices") and chunk.data.choices:
                    choice = chunk.data.choices[0]

                    if hasattr(choice, "delta"):
                        delta = choice.delta

                        if hasattr(delta, "content") and delta.content:
                            if not content_started:
                                yield self.format_chunk({"chunk_type": "content_start", "data_type": "text"})
                                content_started = True

                            yield self.format_chunk(
                                {"chunk_type": "content_delta", "data_type": "text", "data": delta.content}
                            )
                            accumulated_text += delta.content

                        if hasattr(delta, "tool_calls") and delta.tool_calls:
                            for tool_call in delta.tool_calls:
                                tool_id = tool_call.id
                                tool_calls.setdefault(tool_id, []).append(tool_call)

                    if hasattr(choice, "finish_reason") and choice.finish_reason:
                        if content_started:
                            yield self.format_chunk({"chunk_type": "content_stop", "data_type": "text"})

                        for tool_deltas in tool_calls.values():
                            yield self.format_chunk(
                                {"chunk_type": "content_start", "data_type": "tool", "data": tool_deltas[0]}
                            )

                            for tool_delta in tool_deltas:
                                if hasattr(tool_delta.function, "arguments"):
                                    yield self.format_chunk(
                                        {
                                            "chunk_type": "content_delta",
                                            "data_type": "tool",
                                            "data": tool_delta.function.arguments,
                                        }
                                    )

                            yield self.format_chunk({"chunk_type": "content_stop", "data_type": "tool"})

                        yield self.format_chunk({"chunk_type": "message_stop", "data": choice.finish_reason})

                        if hasattr(chunk, "usage"):
                            yield self.format_chunk({"chunk_type": "metadata", "data": chunk.usage})

    except Exception as e:
        if "rate" in str(e).lower() or "429" in str(e):
            raise ModelThrottledException(str(e)) from e
        raise

    logger.debug("finished streaming response from model")

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Returns:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

An instance of the output model with the generated data.

Raises:

Type Description
ValueError

If the response cannot be parsed into the output model.

Source code in strands/models/mistral.py
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
@override
async def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Returns:
        An instance of the output model with the generated data.

    Raises:
        ValueError: If the response cannot be parsed into the output model.
    """
    tool_spec: ToolSpec = {
        "name": f"extract_{output_model.__name__.lower()}",
        "description": f"Extract structured data in the format of {output_model.__name__}",
        "inputSchema": {"json": output_model.model_json_schema()},
    }

    formatted_request = self.format_request(messages=prompt, tool_specs=[tool_spec], system_prompt=system_prompt)

    formatted_request["tool_choice"] = "any"
    formatted_request["parallel_tool_calls"] = False

    async with mistralai.Mistral(**self.client_args) as client:
        response = await client.chat.complete_async(**formatted_request)

    if response.choices and response.choices[0].message.tool_calls:
        tool_call = response.choices[0].message.tool_calls[0]
        try:
            # Handle both string and dict arguments
            if isinstance(tool_call.function.arguments, str):
                arguments = json.loads(tool_call.function.arguments)
            else:
                arguments = tool_call.function.arguments
            yield {"output": output_model(**arguments)}
            return
        except (json.JSONDecodeError, TypeError, ValueError) as e:
            raise ValueError(f"Failed to parse tool call arguments into model: {e}") from e

    raise ValueError("No tool calls found in response")

update_config(**model_config)

Update the Mistral Model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[MistralConfig]

Configuration overrides.

{}
Source code in strands/models/mistral.py
 99
100
101
102
103
104
105
106
107
@override
def update_config(self, **model_config: Unpack[MistralConfig]) -> None:  # type: ignore
    """Update the Mistral Model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    validate_config_keys(model_config, self.MistralConfig)
    self.config.update(model_config)

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
35
36
37
38
39
40
41
42
43
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
25
26
27
28
29
30
31
32
33
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

ModelThrottledException

Bases: Exception

Exception raised when the model is throttled.

This exception is raised when the model is throttled by the service. This typically occurs when the service is throttling the requests from the client.

Source code in strands/types/exceptions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ModelThrottledException(Exception):
    """Exception raised when the model is throttled.

    This exception is raised when the model is throttled by the service. This typically occurs when the service is
    throttling the requests from the client.
    """

    def __init__(self, message: str) -> None:
        """Initialize exception.

        Args:
            message: The message from the service that describes the throttling.
        """
        self.message = message
        super().__init__(message)

    pass

__init__(message)

Initialize exception.

Parameters:

Name Type Description Default
message str

The message from the service that describes the throttling.

required
Source code in strands/types/exceptions.py
62
63
64
65
66
67
68
69
def __init__(self, message: str) -> None:
    """Initialize exception.

    Args:
        message: The message from the service that describes the throttling.
    """
    self.message = message
    super().__init__(message)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

ToolResult

Bases: TypedDict

Result of a tool execution.

Attributes:

Name Type Description
content list[ToolResultContent]

List of result content returned by the tool.

status ToolResultStatus

The status of the tool execution ("success" or "error").

toolUseId str

The unique identifier of the tool use request that produced this result.

Source code in strands/types/tools.py
87
88
89
90
91
92
93
94
95
96
97
98
class ToolResult(TypedDict):
    """Result of a tool execution.

    Attributes:
        content: List of result content returned by the tool.
        status: The status of the tool execution ("success" or "error").
        toolUseId: The unique identifier of the tool use request that produced this result.
    """

    content: list[ToolResultContent]
    status: ToolResultStatus
    toolUseId: str

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

ToolUse

Bases: TypedDict

A request from the model to use a specific tool with the provided input.

Attributes:

Name Type Description
input Any

The input parameters for the tool. Can be any JSON-serializable type.

name str

The name of the tool to invoke.

toolUseId str

A unique identifier for this specific tool use request.

Source code in strands/types/tools.py
52
53
54
55
56
57
58
59
60
61
62
63
64
class ToolUse(TypedDict):
    """A request from the model to use a specific tool with the provided input.

    Attributes:
        input: The input parameters for the tool.
            Can be any JSON-serializable type.
        name: The name of the tool to invoke.
        toolUseId: A unique identifier for this specific tool use request.
    """

    input: Any
    name: str
    toolUseId: str

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class Type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def validate_config_keys(config_dict: Mapping[str, Any], config_class: Type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )

warn_on_tool_choice_not_supported(tool_choice)

Emits a warning if a tool choice is provided but not supported by the provider.

Parameters:

Name Type Description Default
tool_choice ToolChoice | None

the tool_choice provided to the provider

required
Source code in strands/models/_validation.py
32
33
34
35
36
37
38
39
40
41
42
def warn_on_tool_choice_not_supported(tool_choice: ToolChoice | None) -> None:
    """Emits a warning if a tool choice is provided but not supported by the provider.

    Args:
        tool_choice: the tool_choice provided to the provider
    """
    if tool_choice:
        warnings.warn(
            "A ToolChoice was provided to this provider but is not supported and will be ignored",
            stacklevel=4,
        )