Skip to content

strands.models.ollama

Ollama model provider.

  • Docs: https://ollama.com/

Messages = List[Message] module-attribute

A list of messages representing a conversation.

StopReason = Literal['content_filtered', 'end_turn', 'guardrail_intervened', 'interrupt', 'max_tokens', 'stop_sequence', 'tool_use'] module-attribute

Reason for the model ending its response generation.

  • "content_filtered": Content was filtered due to policy violation
  • "end_turn": Normal completion of the response
  • "guardrail_intervened": Guardrail system intervened
  • "interrupt": Agent was interrupted for human input
  • "max_tokens": Maximum token limit reached
  • "stop_sequence": Stop sequence encountered
  • "tool_use": Model requested to use a tool

T = TypeVar('T', bound=BaseModel) module-attribute

ToolChoice = Union[ToolChoiceAutoDict, ToolChoiceAnyDict, ToolChoiceToolDict] module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

logger = logging.getLogger(__name__) module-attribute

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
35
36
37
38
39
40
41
42
43
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
25
26
27
28
29
30
31
32
33
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

OllamaModel

Bases: Model

Ollama model provider implementation.

The implementation handles Ollama-specific features such as:

  • Local model invocation
  • Streaming responses
  • Tool/function calling
Source code in strands/models/ollama.py
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
class OllamaModel(Model):
    """Ollama model provider implementation.

    The implementation handles Ollama-specific features such as:

    - Local model invocation
    - Streaming responses
    - Tool/function calling
    """

    class OllamaConfig(TypedDict, total=False):
        """Configuration parameters for Ollama models.

        Attributes:
            additional_args: Any additional arguments to include in the request.
            keep_alive: Controls how long the model will stay loaded into memory following the request (default: "5m").
            max_tokens: Maximum number of tokens to generate in the response.
            model_id: Ollama model ID (e.g., "llama3", "mistral", "phi3").
            options: Additional model parameters (e.g., top_k).
            stop_sequences: List of sequences that will stop generation when encountered.
            temperature: Controls randomness in generation (higher = more random).
            top_p: Controls diversity via nucleus sampling (alternative to temperature).
        """

        additional_args: Optional[dict[str, Any]]
        keep_alive: Optional[str]
        max_tokens: Optional[int]
        model_id: str
        options: Optional[dict[str, Any]]
        stop_sequences: Optional[list[str]]
        temperature: Optional[float]
        top_p: Optional[float]

    def __init__(
        self,
        host: Optional[str],
        *,
        ollama_client_args: Optional[dict[str, Any]] = None,
        **model_config: Unpack[OllamaConfig],
    ) -> None:
        """Initialize provider instance.

        Args:
            host: The address of the Ollama server hosting the model.
            ollama_client_args: Additional arguments for the Ollama client.
            **model_config: Configuration options for the Ollama model.
        """
        self.host = host
        self.client_args = ollama_client_args or {}
        validate_config_keys(model_config, self.OllamaConfig)
        self.config = OllamaModel.OllamaConfig(**model_config)

        logger.debug("config=<%s> | initializing", self.config)

    @override
    def update_config(self, **model_config: Unpack[OllamaConfig]) -> None:  # type: ignore
        """Update the Ollama Model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        validate_config_keys(model_config, self.OllamaConfig)
        self.config.update(model_config)

    @override
    def get_config(self) -> OllamaConfig:
        """Get the Ollama model configuration.

        Returns:
            The Ollama model configuration.
        """
        return self.config

    def _format_request_message_contents(self, role: str, content: ContentBlock) -> list[dict[str, Any]]:
        """Format Ollama compatible message contents.

        Ollama doesn't support an array of contents, so we must flatten everything into separate message blocks.

        Args:
            role: E.g., user.
            content: Content block to format.

        Returns:
            Ollama formatted message contents.

        Raises:
            TypeError: If the content block type cannot be converted to an Ollama-compatible format.
        """
        if "text" in content:
            return [{"role": role, "content": content["text"]}]

        if "image" in content:
            return [{"role": role, "images": [content["image"]["source"]["bytes"]]}]

        if "toolUse" in content:
            return [
                {
                    "role": role,
                    "tool_calls": [
                        {
                            "function": {
                                "name": content["toolUse"]["toolUseId"],
                                "arguments": content["toolUse"]["input"],
                            }
                        }
                    ],
                }
            ]

        if "toolResult" in content:
            return [
                formatted_tool_result_content
                for tool_result_content in content["toolResult"]["content"]
                for formatted_tool_result_content in self._format_request_message_contents(
                    "tool",
                    (
                        {"text": json.dumps(tool_result_content["json"])}
                        if "json" in tool_result_content
                        else cast(ContentBlock, tool_result_content)
                    ),
                )
            ]

        raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

    def _format_request_messages(self, messages: Messages, system_prompt: Optional[str] = None) -> list[dict[str, Any]]:
        """Format an Ollama compatible messages array.

        Args:
            messages: List of message objects to be processed by the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            An Ollama compatible messages array.
        """
        system_message = [{"role": "system", "content": system_prompt}] if system_prompt else []

        return system_message + [
            formatted_message
            for message in messages
            for content in message["content"]
            for formatted_message in self._format_request_message_contents(message["role"], content)
        ]

    def format_request(
        self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
    ) -> dict[str, Any]:
        """Format an Ollama chat streaming request.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            An Ollama chat streaming request.

        Raises:
            TypeError: If a message contains a content block type that cannot be converted to an Ollama-compatible
                format.
        """
        return {
            "messages": self._format_request_messages(messages, system_prompt),
            "model": self.config["model_id"],
            "options": {
                **(self.config.get("options") or {}),
                **{
                    key: value
                    for key, value in [
                        ("num_predict", self.config.get("max_tokens")),
                        ("temperature", self.config.get("temperature")),
                        ("top_p", self.config.get("top_p")),
                        ("stop", self.config.get("stop_sequences")),
                    ]
                    if value is not None
                },
            },
            "stream": True,
            "tools": [
                {
                    "type": "function",
                    "function": {
                        "name": tool_spec["name"],
                        "description": tool_spec["description"],
                        "parameters": tool_spec["inputSchema"]["json"],
                    },
                }
                for tool_spec in tool_specs or []
            ],
            **({"keep_alive": self.config["keep_alive"]} if self.config.get("keep_alive") else {}),
            **(
                self.config["additional_args"]
                if "additional_args" in self.config and self.config["additional_args"] is not None
                else {}
            ),
        }

    def format_chunk(self, event: dict[str, Any]) -> StreamEvent:
        """Format the Ollama response events into standardized message chunks.

        Args:
            event: A response event from the Ollama model.

        Returns:
            The formatted chunk.

        Raises:
            RuntimeError: If chunk_type is not recognized.
                This error should never be encountered as we control chunk_type in the stream method.
        """
        match event["chunk_type"]:
            case "message_start":
                return {"messageStart": {"role": "assistant"}}

            case "content_start":
                if event["data_type"] == "text":
                    return {"contentBlockStart": {"start": {}}}

                tool_name = event["data"].function.name
                return {"contentBlockStart": {"start": {"toolUse": {"name": tool_name, "toolUseId": tool_name}}}}

            case "content_delta":
                if event["data_type"] == "text":
                    return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

                tool_arguments = event["data"].function.arguments
                return {"contentBlockDelta": {"delta": {"toolUse": {"input": json.dumps(tool_arguments)}}}}

            case "content_stop":
                return {"contentBlockStop": {}}

            case "message_stop":
                reason: StopReason
                if event["data"] == "tool_use":
                    reason = "tool_use"
                elif event["data"] == "length":
                    reason = "max_tokens"
                else:
                    reason = "end_turn"

                return {"messageStop": {"stopReason": reason}}

            case "metadata":
                return {
                    "metadata": {
                        "usage": {
                            "inputTokens": event["data"].eval_count,
                            "outputTokens": event["data"].prompt_eval_count,
                            "totalTokens": event["data"].eval_count + event["data"].prompt_eval_count,
                        },
                        "metrics": {
                            "latencyMs": event["data"].total_duration / 1e6,
                        },
                    },
                }

            case _:
                raise RuntimeError(f"chunk_type=<{event['chunk_type']} | unknown type")

    @override
    async def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the Ollama model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
                interface consistency but is currently ignored for this model provider.**
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.
        """
        warn_on_tool_choice_not_supported(tool_choice)

        logger.debug("formatting request")
        request = self.format_request(messages, tool_specs, system_prompt)
        logger.debug("request=<%s>", request)

        logger.debug("invoking model")
        tool_requested = False

        client = ollama.AsyncClient(self.host, **self.client_args)
        response = await client.chat(**request)

        logger.debug("got response from model")
        yield self.format_chunk({"chunk_type": "message_start"})
        yield self.format_chunk({"chunk_type": "content_start", "data_type": "text"})

        async for event in response:
            for tool_call in event.message.tool_calls or []:
                yield self.format_chunk({"chunk_type": "content_start", "data_type": "tool", "data": tool_call})
                yield self.format_chunk({"chunk_type": "content_delta", "data_type": "tool", "data": tool_call})
                yield self.format_chunk({"chunk_type": "content_stop", "data_type": "tool", "data": tool_call})
                tool_requested = True

            yield self.format_chunk({"chunk_type": "content_delta", "data_type": "text", "data": event.message.content})

        yield self.format_chunk({"chunk_type": "content_stop", "data_type": "text"})
        yield self.format_chunk(
            {"chunk_type": "message_stop", "data": "tool_use" if tool_requested else event.done_reason}
        )
        yield self.format_chunk({"chunk_type": "metadata", "data": event})

        logger.debug("finished streaming response from model")

    @override
    async def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.
        """
        formatted_request = self.format_request(messages=prompt, system_prompt=system_prompt)
        formatted_request["format"] = output_model.model_json_schema()
        formatted_request["stream"] = False

        client = ollama.AsyncClient(self.host, **self.client_args)
        response = await client.chat(**formatted_request)

        try:
            content = response.message.content.strip()
            yield {"output": output_model.model_validate_json(content)}
        except Exception as e:
            raise ValueError(f"Failed to parse or load content into model: {e}") from e

OllamaConfig

Bases: TypedDict

Configuration parameters for Ollama models.

Attributes:

Name Type Description
additional_args Optional[dict[str, Any]]

Any additional arguments to include in the request.

keep_alive Optional[str]

Controls how long the model will stay loaded into memory following the request (default: "5m").

max_tokens Optional[int]

Maximum number of tokens to generate in the response.

model_id str

Ollama model ID (e.g., "llama3", "mistral", "phi3").

options Optional[dict[str, Any]]

Additional model parameters (e.g., top_k).

stop_sequences Optional[list[str]]

List of sequences that will stop generation when encountered.

temperature Optional[float]

Controls randomness in generation (higher = more random).

top_p Optional[float]

Controls diversity via nucleus sampling (alternative to temperature).

Source code in strands/models/ollama.py
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class OllamaConfig(TypedDict, total=False):
    """Configuration parameters for Ollama models.

    Attributes:
        additional_args: Any additional arguments to include in the request.
        keep_alive: Controls how long the model will stay loaded into memory following the request (default: "5m").
        max_tokens: Maximum number of tokens to generate in the response.
        model_id: Ollama model ID (e.g., "llama3", "mistral", "phi3").
        options: Additional model parameters (e.g., top_k).
        stop_sequences: List of sequences that will stop generation when encountered.
        temperature: Controls randomness in generation (higher = more random).
        top_p: Controls diversity via nucleus sampling (alternative to temperature).
    """

    additional_args: Optional[dict[str, Any]]
    keep_alive: Optional[str]
    max_tokens: Optional[int]
    model_id: str
    options: Optional[dict[str, Any]]
    stop_sequences: Optional[list[str]]
    temperature: Optional[float]
    top_p: Optional[float]

__init__(host, *, ollama_client_args=None, **model_config)

Initialize provider instance.

Parameters:

Name Type Description Default
host Optional[str]

The address of the Ollama server hosting the model.

required
ollama_client_args Optional[dict[str, Any]]

Additional arguments for the Ollama client.

None
**model_config Unpack[OllamaConfig]

Configuration options for the Ollama model.

{}
Source code in strands/models/ollama.py
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
def __init__(
    self,
    host: Optional[str],
    *,
    ollama_client_args: Optional[dict[str, Any]] = None,
    **model_config: Unpack[OllamaConfig],
) -> None:
    """Initialize provider instance.

    Args:
        host: The address of the Ollama server hosting the model.
        ollama_client_args: Additional arguments for the Ollama client.
        **model_config: Configuration options for the Ollama model.
    """
    self.host = host
    self.client_args = ollama_client_args or {}
    validate_config_keys(model_config, self.OllamaConfig)
    self.config = OllamaModel.OllamaConfig(**model_config)

    logger.debug("config=<%s> | initializing", self.config)

format_chunk(event)

Format the Ollama response events into standardized message chunks.

Parameters:

Name Type Description Default
event dict[str, Any]

A response event from the Ollama model.

required

Returns:

Type Description
StreamEvent

The formatted chunk.

Raises:

Type Description
RuntimeError

If chunk_type is not recognized. This error should never be encountered as we control chunk_type in the stream method.

Source code in strands/models/ollama.py
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
def format_chunk(self, event: dict[str, Any]) -> StreamEvent:
    """Format the Ollama response events into standardized message chunks.

    Args:
        event: A response event from the Ollama model.

    Returns:
        The formatted chunk.

    Raises:
        RuntimeError: If chunk_type is not recognized.
            This error should never be encountered as we control chunk_type in the stream method.
    """
    match event["chunk_type"]:
        case "message_start":
            return {"messageStart": {"role": "assistant"}}

        case "content_start":
            if event["data_type"] == "text":
                return {"contentBlockStart": {"start": {}}}

            tool_name = event["data"].function.name
            return {"contentBlockStart": {"start": {"toolUse": {"name": tool_name, "toolUseId": tool_name}}}}

        case "content_delta":
            if event["data_type"] == "text":
                return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

            tool_arguments = event["data"].function.arguments
            return {"contentBlockDelta": {"delta": {"toolUse": {"input": json.dumps(tool_arguments)}}}}

        case "content_stop":
            return {"contentBlockStop": {}}

        case "message_stop":
            reason: StopReason
            if event["data"] == "tool_use":
                reason = "tool_use"
            elif event["data"] == "length":
                reason = "max_tokens"
            else:
                reason = "end_turn"

            return {"messageStop": {"stopReason": reason}}

        case "metadata":
            return {
                "metadata": {
                    "usage": {
                        "inputTokens": event["data"].eval_count,
                        "outputTokens": event["data"].prompt_eval_count,
                        "totalTokens": event["data"].eval_count + event["data"].prompt_eval_count,
                    },
                    "metrics": {
                        "latencyMs": event["data"].total_duration / 1e6,
                    },
                },
            }

        case _:
            raise RuntimeError(f"chunk_type=<{event['chunk_type']} | unknown type")

format_request(messages, tool_specs=None, system_prompt=None)

Format an Ollama chat streaming request.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None

Returns:

Type Description
dict[str, Any]

An Ollama chat streaming request.

Raises:

Type Description
TypeError

If a message contains a content block type that cannot be converted to an Ollama-compatible format.

Source code in strands/models/ollama.py
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
def format_request(
    self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
) -> dict[str, Any]:
    """Format an Ollama chat streaming request.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.

    Returns:
        An Ollama chat streaming request.

    Raises:
        TypeError: If a message contains a content block type that cannot be converted to an Ollama-compatible
            format.
    """
    return {
        "messages": self._format_request_messages(messages, system_prompt),
        "model": self.config["model_id"],
        "options": {
            **(self.config.get("options") or {}),
            **{
                key: value
                for key, value in [
                    ("num_predict", self.config.get("max_tokens")),
                    ("temperature", self.config.get("temperature")),
                    ("top_p", self.config.get("top_p")),
                    ("stop", self.config.get("stop_sequences")),
                ]
                if value is not None
            },
        },
        "stream": True,
        "tools": [
            {
                "type": "function",
                "function": {
                    "name": tool_spec["name"],
                    "description": tool_spec["description"],
                    "parameters": tool_spec["inputSchema"]["json"],
                },
            }
            for tool_spec in tool_specs or []
        ],
        **({"keep_alive": self.config["keep_alive"]} if self.config.get("keep_alive") else {}),
        **(
            self.config["additional_args"]
            if "additional_args" in self.config and self.config["additional_args"] is not None
            else {}
        ),
    }

get_config()

Get the Ollama model configuration.

Returns:

Type Description
OllamaConfig

The Ollama model configuration.

Source code in strands/models/ollama.py
89
90
91
92
93
94
95
96
@override
def get_config(self) -> OllamaConfig:
    """Get the Ollama model configuration.

    Returns:
        The Ollama model configuration.
    """
    return self.config

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, **kwargs) async

Stream conversation with the Ollama model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation. Note: This parameter is accepted for interface consistency but is currently ignored for this model provider.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Formatted message chunks from the model.

Source code in strands/models/ollama.py
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
@override
async def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the Ollama model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
            interface consistency but is currently ignored for this model provider.**
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.
    """
    warn_on_tool_choice_not_supported(tool_choice)

    logger.debug("formatting request")
    request = self.format_request(messages, tool_specs, system_prompt)
    logger.debug("request=<%s>", request)

    logger.debug("invoking model")
    tool_requested = False

    client = ollama.AsyncClient(self.host, **self.client_args)
    response = await client.chat(**request)

    logger.debug("got response from model")
    yield self.format_chunk({"chunk_type": "message_start"})
    yield self.format_chunk({"chunk_type": "content_start", "data_type": "text"})

    async for event in response:
        for tool_call in event.message.tool_calls or []:
            yield self.format_chunk({"chunk_type": "content_start", "data_type": "tool", "data": tool_call})
            yield self.format_chunk({"chunk_type": "content_delta", "data_type": "tool", "data": tool_call})
            yield self.format_chunk({"chunk_type": "content_stop", "data_type": "tool", "data": tool_call})
            tool_requested = True

        yield self.format_chunk({"chunk_type": "content_delta", "data_type": "text", "data": event.message.content})

    yield self.format_chunk({"chunk_type": "content_stop", "data_type": "text"})
    yield self.format_chunk(
        {"chunk_type": "message_stop", "data": "tool_use" if tool_requested else event.done_reason}
    )
    yield self.format_chunk({"chunk_type": "metadata", "data": event})

    logger.debug("finished streaming response from model")

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Source code in strands/models/ollama.py
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
@override
async def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.
    """
    formatted_request = self.format_request(messages=prompt, system_prompt=system_prompt)
    formatted_request["format"] = output_model.model_json_schema()
    formatted_request["stream"] = False

    client = ollama.AsyncClient(self.host, **self.client_args)
    response = await client.chat(**formatted_request)

    try:
        content = response.message.content.strip()
        yield {"output": output_model.model_validate_json(content)}
    except Exception as e:
        raise ValueError(f"Failed to parse or load content into model: {e}") from e

update_config(**model_config)

Update the Ollama Model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[OllamaConfig]

Configuration overrides.

{}
Source code in strands/models/ollama.py
79
80
81
82
83
84
85
86
87
@override
def update_config(self, **model_config: Unpack[OllamaConfig]) -> None:  # type: ignore
    """Update the Ollama Model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    validate_config_keys(model_config, self.OllamaConfig)
    self.config.update(model_config)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class Type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def validate_config_keys(config_dict: Mapping[str, Any], config_class: Type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )

warn_on_tool_choice_not_supported(tool_choice)

Emits a warning if a tool choice is provided but not supported by the provider.

Parameters:

Name Type Description Default
tool_choice ToolChoice | None

the tool_choice provided to the provider

required
Source code in strands/models/_validation.py
32
33
34
35
36
37
38
39
40
41
42
def warn_on_tool_choice_not_supported(tool_choice: ToolChoice | None) -> None:
    """Emits a warning if a tool choice is provided but not supported by the provider.

    Args:
        tool_choice: the tool_choice provided to the provider
    """
    if tool_choice:
        warnings.warn(
            "A ToolChoice was provided to this provider but is not supported and will be ignored",
            stacklevel=4,
        )