Skip to content

strands.models.writer

Writer model provider.

  • Docs: https://dev.writer.com/home/introduction

Messages = List[Message] module-attribute

A list of messages representing a conversation.

T = TypeVar('T', bound=BaseModel) module-attribute

ToolChoice = Union[ToolChoiceAutoDict, ToolChoiceAnyDict, ToolChoiceToolDict] module-attribute

Configuration for how the model should choose tools.

  • "auto": The model decides whether to use tools based on the context
  • "any": The model must use at least one tool (any tool)
  • "tool": The model must use the specified tool

logger = logging.getLogger(__name__) module-attribute

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

Model

Bases: ABC

Abstract base class for Agent model providers.

This class defines the interface for all model implementations in the Strands Agents SDK. It provides a standardized way to configure and process requests for different AI model providers.

Source code in strands/models/model.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
class Model(abc.ABC):
    """Abstract base class for Agent model providers.

    This class defines the interface for all model implementations in the Strands Agents SDK. It provides a
    standardized way to configure and process requests for different AI model providers.
    """

    @abc.abstractmethod
    # pragma: no cover
    def update_config(self, **model_config: Any) -> None:
        """Update the model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def get_config(self) -> Any:
        """Return the model configuration.

        Returns:
            The model's configuration.
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Model events with the last being the structured output.

        Raises:
            ValidationException: The response format from the model does not match the output_model
        """
        pass

    @abc.abstractmethod
    # pragma: no cover
    def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        system_prompt_content: list[SystemContentBlock] | None = None,
        **kwargs: Any,
    ) -> AsyncIterable[StreamEvent]:
        """Stream conversation with the model.

        This method handles the full lifecycle of conversing with the model:

        1. Format the messages, tool specs, and configuration into a streaming request
        2. Send the request to the model
        3. Yield the formatted message chunks

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation.
            system_prompt_content: System prompt content blocks for advanced features like caching.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        pass

get_config() abstractmethod

Return the model configuration.

Returns:

Type Description
Any

The model's configuration.

Source code in strands/models/model.py
35
36
37
38
39
40
41
42
43
@abc.abstractmethod
# pragma: no cover
def get_config(self) -> Any:
    """Return the model configuration.

    Returns:
        The model's configuration.
    """
    pass

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, system_prompt_content=None, **kwargs) abstractmethod

Stream conversation with the model.

This method handles the full lifecycle of conversing with the model:

  1. Format the messages, tool specs, and configuration into a streaming request
  2. Send the request to the model
  3. Yield the formatted message chunks

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation.

None
system_prompt_content list[SystemContentBlock] | None

System prompt content blocks for advanced features like caching.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncIterable[StreamEvent]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/model.py
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@abc.abstractmethod
# pragma: no cover
def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    system_prompt_content: list[SystemContentBlock] | None = None,
    **kwargs: Any,
) -> AsyncIterable[StreamEvent]:
    """Stream conversation with the model.

    This method handles the full lifecycle of conversing with the model:

    1. Format the messages, tool specs, and configuration into a streaming request
    2. Send the request to the model
    3. Yield the formatted message chunks

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation.
        system_prompt_content: System prompt content blocks for advanced features like caching.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    pass

structured_output(output_model, prompt, system_prompt=None, **kwargs) abstractmethod

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[dict[str, Union[T, Any]], None]

Model events with the last being the structured output.

Raises:

Type Description
ValidationException

The response format from the model does not match the output_model

Source code in strands/models/model.py
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
@abc.abstractmethod
# pragma: no cover
def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Model events with the last being the structured output.

    Raises:
        ValidationException: The response format from the model does not match the output_model
    """
    pass

update_config(**model_config) abstractmethod

Update the model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Any

Configuration overrides.

{}
Source code in strands/models/model.py
25
26
27
28
29
30
31
32
33
@abc.abstractmethod
# pragma: no cover
def update_config(self, **model_config: Any) -> None:
    """Update the model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    pass

ModelThrottledException

Bases: Exception

Exception raised when the model is throttled.

This exception is raised when the model is throttled by the service. This typically occurs when the service is throttling the requests from the client.

Source code in strands/types/exceptions.py
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
class ModelThrottledException(Exception):
    """Exception raised when the model is throttled.

    This exception is raised when the model is throttled by the service. This typically occurs when the service is
    throttling the requests from the client.
    """

    def __init__(self, message: str) -> None:
        """Initialize exception.

        Args:
            message: The message from the service that describes the throttling.
        """
        self.message = message
        super().__init__(message)

    pass

__init__(message)

Initialize exception.

Parameters:

Name Type Description Default
message str

The message from the service that describes the throttling.

required
Source code in strands/types/exceptions.py
62
63
64
65
66
67
68
69
def __init__(self, message: str) -> None:
    """Initialize exception.

    Args:
        message: The message from the service that describes the throttling.
    """
    self.message = message
    super().__init__(message)

StreamEvent

Bases: TypedDict

The messages output stream.

Attributes:

Name Type Description
contentBlockDelta ContentBlockDeltaEvent

Delta content for a content block.

contentBlockStart ContentBlockStartEvent

Start of a content block.

contentBlockStop ContentBlockStopEvent

End of a content block.

internalServerException ExceptionEvent

Internal server error information.

messageStart MessageStartEvent

Start of a message.

messageStop MessageStopEvent

End of a message.

metadata MetadataEvent

Metadata about the streaming response.

modelStreamErrorException ModelStreamErrorEvent

Model streaming error information.

serviceUnavailableException ExceptionEvent

Service unavailable error information.

throttlingException ExceptionEvent

Throttling error information.

validationException ExceptionEvent

Validation error information.

Source code in strands/types/streaming.py
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
class StreamEvent(TypedDict, total=False):
    """The messages output stream.

    Attributes:
        contentBlockDelta: Delta content for a content block.
        contentBlockStart: Start of a content block.
        contentBlockStop: End of a content block.
        internalServerException: Internal server error information.
        messageStart: Start of a message.
        messageStop: End of a message.
        metadata: Metadata about the streaming response.
        modelStreamErrorException: Model streaming error information.
        serviceUnavailableException: Service unavailable error information.
        throttlingException: Throttling error information.
        validationException: Validation error information.
    """

    contentBlockDelta: ContentBlockDeltaEvent
    contentBlockStart: ContentBlockStartEvent
    contentBlockStop: ContentBlockStopEvent
    internalServerException: ExceptionEvent
    messageStart: MessageStartEvent
    messageStop: MessageStopEvent
    metadata: MetadataEvent
    redactContent: RedactContentEvent
    modelStreamErrorException: ModelStreamErrorEvent
    serviceUnavailableException: ExceptionEvent
    throttlingException: ExceptionEvent
    validationException: ExceptionEvent

ToolResult

Bases: TypedDict

Result of a tool execution.

Attributes:

Name Type Description
content list[ToolResultContent]

List of result content returned by the tool.

status ToolResultStatus

The status of the tool execution ("success" or "error").

toolUseId str

The unique identifier of the tool use request that produced this result.

Source code in strands/types/tools.py
87
88
89
90
91
92
93
94
95
96
97
98
class ToolResult(TypedDict):
    """Result of a tool execution.

    Attributes:
        content: List of result content returned by the tool.
        status: The status of the tool execution ("success" or "error").
        toolUseId: The unique identifier of the tool use request that produced this result.
    """

    content: list[ToolResultContent]
    status: ToolResultStatus
    toolUseId: str

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

ToolUse

Bases: TypedDict

A request from the model to use a specific tool with the provided input.

Attributes:

Name Type Description
input Any

The input parameters for the tool. Can be any JSON-serializable type.

name str

The name of the tool to invoke.

toolUseId str

A unique identifier for this specific tool use request.

Source code in strands/types/tools.py
52
53
54
55
56
57
58
59
60
61
62
63
64
class ToolUse(TypedDict):
    """A request from the model to use a specific tool with the provided input.

    Attributes:
        input: The input parameters for the tool.
            Can be any JSON-serializable type.
        name: The name of the tool to invoke.
        toolUseId: A unique identifier for this specific tool use request.
    """

    input: Any
    name: str
    toolUseId: str

WriterModel

Bases: Model

Writer API model provider implementation.

Source code in strands/models/writer.py
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
class WriterModel(Model):
    """Writer API model provider implementation."""

    class WriterConfig(TypedDict, total=False):
        """Configuration options for Writer API.

        Attributes:
            model_id: Model name to use (e.g. palmyra-x5, palmyra-x4, etc.).
            max_tokens: Maximum number of tokens to generate.
            stop: Default stop sequences.
            stream_options: Additional options for streaming.
            temperature: What sampling temperature to use.
            top_p: Threshold for 'nucleus sampling'
        """

        model_id: str
        max_tokens: Optional[int]
        stop: Optional[Union[str, List[str]]]
        stream_options: Dict[str, Any]
        temperature: Optional[float]
        top_p: Optional[float]

    def __init__(self, client_args: Optional[dict[str, Any]] = None, **model_config: Unpack[WriterConfig]):
        """Initialize provider instance.

        Args:
            client_args: Arguments for the Writer client (e.g., api_key, base_url, timeout, etc.).
            **model_config: Configuration options for the Writer model.
        """
        validate_config_keys(model_config, self.WriterConfig)
        self.config = WriterModel.WriterConfig(**model_config)

        logger.debug("config=<%s> | initializing", self.config)

        client_args = client_args or {}
        self.client = writerai.AsyncClient(**client_args)

    @override
    def update_config(self, **model_config: Unpack[WriterConfig]) -> None:  # type: ignore[override]
        """Update the Writer Model configuration with the provided arguments.

        Args:
            **model_config: Configuration overrides.
        """
        validate_config_keys(model_config, self.WriterConfig)
        self.config.update(model_config)

    @override
    def get_config(self) -> WriterConfig:
        """Get the Writer model configuration.

        Returns:
            The Writer model configuration.
        """
        return self.config

    def _format_request_message_contents_vision(self, contents: list[ContentBlock]) -> list[dict[str, Any]]:
        def _format_content_vision(content: ContentBlock) -> dict[str, Any]:
            """Format a Writer content block for Palmyra V5 request.

            - NOTE: "reasoningContent", "document" and "video" are not supported currently.

            Args:
                content: Message content.

            Returns:
                Writer formatted content block for models, which support vision content format.

            Raises:
                TypeError: If the content block type cannot be converted to a Writer-compatible format.
            """
            if "text" in content:
                return {"text": content["text"], "type": "text"}

            if "image" in content:
                mime_type = mimetypes.types_map.get(f".{content['image']['format']}", "application/octet-stream")
                image_data = base64.b64encode(content["image"]["source"]["bytes"]).decode("utf-8")

                return {
                    "image_url": {
                        "url": f"data:{mime_type};base64,{image_data}",
                    },
                    "type": "image_url",
                }

            raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

        return [
            _format_content_vision(content)
            for content in contents
            if not any(block_type in content for block_type in ["toolResult", "toolUse"])
        ]

    def _format_request_message_contents(self, contents: list[ContentBlock]) -> str:
        def _format_content(content: ContentBlock) -> str:
            """Format a Writer content block for Palmyra models (except V5) request.

            - NOTE: "reasoningContent", "document", "video" and "image" are not supported currently.

            Args:
                content: Message content.

            Returns:
                Writer formatted content block.

            Raises:
                TypeError: If the content block type cannot be converted to a Writer-compatible format.
            """
            if "text" in content:
                return content["text"]

            raise TypeError(f"content_type=<{next(iter(content))}> | unsupported type")

        content_blocks = list(
            filter(
                lambda content: content.get("text")
                and not any(block_type in content for block_type in ["toolResult", "toolUse"]),
                contents,
            )
        )

        if len(content_blocks) > 1:
            raise ValueError(
                f"Model with name {self.get_config().get('model_id', 'N/A')} doesn't support multiple contents"
            )
        elif len(content_blocks) == 1:
            return _format_content(content_blocks[0])
        else:
            return ""

    def _format_request_message_tool_call(self, tool_use: ToolUse) -> dict[str, Any]:
        """Format a Writer tool call.

        Args:
            tool_use: Tool use requested by the model.

        Returns:
            Writer formatted tool call.
        """
        return {
            "function": {
                "arguments": json.dumps(tool_use["input"]),
                "name": tool_use["name"],
            },
            "id": tool_use["toolUseId"],
            "type": "function",
        }

    def _format_request_tool_message(self, tool_result: ToolResult) -> dict[str, Any]:
        """Format a Writer tool message.

        Args:
            tool_result: Tool result collected from a tool execution.

        Returns:
            Writer formatted tool message.
        """
        contents = cast(
            list[ContentBlock],
            [
                {"text": json.dumps(content["json"])} if "json" in content else content
                for content in tool_result["content"]
            ],
        )

        if self.get_config().get("model_id", "") == "palmyra-x5":
            formatted_contents = self._format_request_message_contents_vision(contents)
        else:
            formatted_contents = self._format_request_message_contents(contents)  # type: ignore [assignment]

        return {
            "role": "tool",
            "tool_call_id": tool_result["toolUseId"],
            "content": formatted_contents,
        }

    def _format_request_messages(self, messages: Messages, system_prompt: Optional[str] = None) -> list[dict[str, Any]]:
        """Format a Writer compatible messages array.

        Args:
            messages: List of message objects to be processed by the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            Writer compatible messages array.
        """
        formatted_messages: list[dict[str, Any]]
        formatted_messages = [{"role": "system", "content": system_prompt}] if system_prompt else []

        for message in messages:
            contents = message["content"]

            # Only palmyra V5 support multiple content. Other models support only '{"content": "text_content"}'
            if self.get_config().get("model_id", "") == "palmyra-x5":
                formatted_contents: str | list[dict[str, Any]] = self._format_request_message_contents_vision(contents)
            else:
                formatted_contents = self._format_request_message_contents(contents)

            formatted_tool_calls = [
                self._format_request_message_tool_call(content["toolUse"])
                for content in contents
                if "toolUse" in content
            ]
            formatted_tool_messages = [
                self._format_request_tool_message(content["toolResult"])
                for content in contents
                if "toolResult" in content
            ]

            formatted_message = {
                "role": message["role"],
                "content": formatted_contents if len(formatted_contents) > 0 else "",
                **({"tool_calls": formatted_tool_calls} if formatted_tool_calls else {}),
            }
            formatted_messages.append(formatted_message)
            formatted_messages.extend(formatted_tool_messages)

        return [message for message in formatted_messages if message["content"] or "tool_calls" in message]

    def format_request(
        self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
    ) -> Any:
        """Format a streaming request to the underlying model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.

        Returns:
            The formatted request.
        """
        request = {
            **{k: v for k, v in self.config.items()},
            "messages": self._format_request_messages(messages, system_prompt),
            "stream": True,
        }
        try:
            request["model"] = request.pop(
                "model_id"
            )  # To be consisted with other models WriterConfig use 'model_id' arg, but Writer API wait for 'model' arg
        except KeyError as e:
            raise KeyError("Please specify a model ID. Use 'model_id' keyword argument.") from e

        # Writer don't support empty tools attribute
        if tool_specs:
            request["tools"] = [
                {
                    "type": "function",
                    "function": {
                        "name": tool_spec["name"],
                        "description": tool_spec["description"],
                        "parameters": tool_spec["inputSchema"]["json"],
                    },
                }
                for tool_spec in tool_specs
            ]

        return request

    def format_chunk(self, event: Any) -> StreamEvent:
        """Format the model response events into standardized message chunks.

        Args:
            event: A response event from the model.

        Returns:
            The formatted chunk.
        """
        match event.get("chunk_type", ""):
            case "message_start":
                return {"messageStart": {"role": "assistant"}}

            case "content_block_start":
                if event["data_type"] == "text":
                    return {"contentBlockStart": {"start": {}}}

                return {
                    "contentBlockStart": {
                        "start": {
                            "toolUse": {
                                "name": event["data"].function.name,
                                "toolUseId": event["data"].id,
                            }
                        }
                    }
                }

            case "content_block_delta":
                if event["data_type"] == "text":
                    return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

                return {"contentBlockDelta": {"delta": {"toolUse": {"input": event["data"].function.arguments}}}}

            case "content_block_stop":
                return {"contentBlockStop": {}}

            case "message_stop":
                match event["data"]:
                    case "tool_calls":
                        return {"messageStop": {"stopReason": "tool_use"}}
                    case "length":
                        return {"messageStop": {"stopReason": "max_tokens"}}
                    case _:
                        return {"messageStop": {"stopReason": "end_turn"}}

            case "metadata":
                return {
                    "metadata": {
                        "usage": {
                            "inputTokens": event["data"].prompt_tokens if event["data"] else 0,
                            "outputTokens": event["data"].completion_tokens if event["data"] else 0,
                            "totalTokens": event["data"].total_tokens if event["data"] else 0,
                        },  # If 'stream_options' param is unset, empty metadata will be provided.
                        # To avoid errors replacing expected fields with default zero value
                        "metrics": {
                            "latencyMs": 0,  # All palmyra models don't provide 'latency' metadata
                        },
                    },
                }

            case _:
                raise RuntimeError(f"chunk_type=<{event['chunk_type']} | unknown type")

    @override
    async def stream(
        self,
        messages: Messages,
        tool_specs: Optional[list[ToolSpec]] = None,
        system_prompt: Optional[str] = None,
        *,
        tool_choice: ToolChoice | None = None,
        **kwargs: Any,
    ) -> AsyncGenerator[StreamEvent, None]:
        """Stream conversation with the Writer model.

        Args:
            messages: List of message objects to be processed by the model.
            tool_specs: List of tool specifications to make available to the model.
            system_prompt: System prompt to provide context to the model.
            tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
                interface consistency but is currently ignored for this model provider.**
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Formatted message chunks from the model.

        Raises:
            ModelThrottledException: When the model service is throttling requests from the client.
        """
        warn_on_tool_choice_not_supported(tool_choice)

        logger.debug("formatting request")
        request = self.format_request(messages, tool_specs, system_prompt)
        logger.debug("request=<%s>", request)

        logger.debug("invoking model")
        try:
            response = await self.client.chat.chat(**request)
        except writerai.RateLimitError as e:
            raise ModelThrottledException(str(e)) from e

        yield self.format_chunk({"chunk_type": "message_start"})
        yield self.format_chunk({"chunk_type": "content_block_start", "data_type": "text"})

        tool_calls: dict[int, list[Any]] = {}

        async for chunk in response:
            if not getattr(chunk, "choices", None):
                continue
            choice = chunk.choices[0]

            if choice.delta.content:
                yield self.format_chunk(
                    {"chunk_type": "content_block_delta", "data_type": "text", "data": choice.delta.content}
                )

            for tool_call in choice.delta.tool_calls or []:
                tool_calls.setdefault(tool_call.index, []).append(tool_call)

            if choice.finish_reason:
                break

        yield self.format_chunk({"chunk_type": "content_block_stop", "data_type": "text"})

        for tool_deltas in tool_calls.values():
            tool_start, tool_deltas = tool_deltas[0], tool_deltas[1:]
            yield self.format_chunk({"chunk_type": "content_block_start", "data_type": "tool", "data": tool_start})

            for tool_delta in tool_deltas:
                yield self.format_chunk({"chunk_type": "content_block_delta", "data_type": "tool", "data": tool_delta})

            yield self.format_chunk({"chunk_type": "content_block_stop", "data_type": "tool"})

        yield self.format_chunk({"chunk_type": "message_stop", "data": choice.finish_reason})

        # Iterating until the end to fetch metadata chunk
        async for chunk in response:
            _ = chunk

        yield self.format_chunk({"chunk_type": "metadata", "data": chunk.usage})

        logger.debug("finished streaming response from model")

    @override
    async def structured_output(
        self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
    ) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
        """Get structured output from the model.

        Args:
            output_model: The output model to use for the agent.
            prompt: The prompt messages to use for the agent.
            system_prompt: System prompt to provide context to the model.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        formatted_request = self.format_request(messages=prompt, tool_specs=None, system_prompt=system_prompt)
        formatted_request["response_format"] = {
            "type": "json_schema",
            "json_schema": {"schema": output_model.model_json_schema()},
        }
        formatted_request["stream"] = False
        formatted_request.pop("stream_options", None)

        response = await self.client.chat.chat(**formatted_request)

        try:
            content = response.choices[0].message.content.strip()
            yield {"output": output_model.model_validate_json(content)}
        except Exception as e:
            raise ValueError(f"Failed to parse or load content into model: {e}") from e

WriterConfig

Bases: TypedDict

Configuration options for Writer API.

Attributes:

Name Type Description
model_id str

Model name to use (e.g. palmyra-x5, palmyra-x4, etc.).

max_tokens Optional[int]

Maximum number of tokens to generate.

stop Optional[Union[str, List[str]]]

Default stop sequences.

stream_options Dict[str, Any]

Additional options for streaming.

temperature Optional[float]

What sampling temperature to use.

top_p Optional[float]

Threshold for 'nucleus sampling'

Source code in strands/models/writer.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
class WriterConfig(TypedDict, total=False):
    """Configuration options for Writer API.

    Attributes:
        model_id: Model name to use (e.g. palmyra-x5, palmyra-x4, etc.).
        max_tokens: Maximum number of tokens to generate.
        stop: Default stop sequences.
        stream_options: Additional options for streaming.
        temperature: What sampling temperature to use.
        top_p: Threshold for 'nucleus sampling'
    """

    model_id: str
    max_tokens: Optional[int]
    stop: Optional[Union[str, List[str]]]
    stream_options: Dict[str, Any]
    temperature: Optional[float]
    top_p: Optional[float]

__init__(client_args=None, **model_config)

Initialize provider instance.

Parameters:

Name Type Description Default
client_args Optional[dict[str, Any]]

Arguments for the Writer client (e.g., api_key, base_url, timeout, etc.).

None
**model_config Unpack[WriterConfig]

Configuration options for the Writer model.

{}
Source code in strands/models/writer.py
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def __init__(self, client_args: Optional[dict[str, Any]] = None, **model_config: Unpack[WriterConfig]):
    """Initialize provider instance.

    Args:
        client_args: Arguments for the Writer client (e.g., api_key, base_url, timeout, etc.).
        **model_config: Configuration options for the Writer model.
    """
    validate_config_keys(model_config, self.WriterConfig)
    self.config = WriterModel.WriterConfig(**model_config)

    logger.debug("config=<%s> | initializing", self.config)

    client_args = client_args or {}
    self.client = writerai.AsyncClient(**client_args)

format_chunk(event)

Format the model response events into standardized message chunks.

Parameters:

Name Type Description Default
event Any

A response event from the model.

required

Returns:

Type Description
StreamEvent

The formatted chunk.

Source code in strands/models/writer.py
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
def format_chunk(self, event: Any) -> StreamEvent:
    """Format the model response events into standardized message chunks.

    Args:
        event: A response event from the model.

    Returns:
        The formatted chunk.
    """
    match event.get("chunk_type", ""):
        case "message_start":
            return {"messageStart": {"role": "assistant"}}

        case "content_block_start":
            if event["data_type"] == "text":
                return {"contentBlockStart": {"start": {}}}

            return {
                "contentBlockStart": {
                    "start": {
                        "toolUse": {
                            "name": event["data"].function.name,
                            "toolUseId": event["data"].id,
                        }
                    }
                }
            }

        case "content_block_delta":
            if event["data_type"] == "text":
                return {"contentBlockDelta": {"delta": {"text": event["data"]}}}

            return {"contentBlockDelta": {"delta": {"toolUse": {"input": event["data"].function.arguments}}}}

        case "content_block_stop":
            return {"contentBlockStop": {}}

        case "message_stop":
            match event["data"]:
                case "tool_calls":
                    return {"messageStop": {"stopReason": "tool_use"}}
                case "length":
                    return {"messageStop": {"stopReason": "max_tokens"}}
                case _:
                    return {"messageStop": {"stopReason": "end_turn"}}

        case "metadata":
            return {
                "metadata": {
                    "usage": {
                        "inputTokens": event["data"].prompt_tokens if event["data"] else 0,
                        "outputTokens": event["data"].completion_tokens if event["data"] else 0,
                        "totalTokens": event["data"].total_tokens if event["data"] else 0,
                    },  # If 'stream_options' param is unset, empty metadata will be provided.
                    # To avoid errors replacing expected fields with default zero value
                    "metrics": {
                        "latencyMs": 0,  # All palmyra models don't provide 'latency' metadata
                    },
                },
            }

        case _:
            raise RuntimeError(f"chunk_type=<{event['chunk_type']} | unknown type")

format_request(messages, tool_specs=None, system_prompt=None)

Format a streaming request to the underlying model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None

Returns:

Type Description
Any

The formatted request.

Source code in strands/models/writer.py
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
def format_request(
    self, messages: Messages, tool_specs: Optional[list[ToolSpec]] = None, system_prompt: Optional[str] = None
) -> Any:
    """Format a streaming request to the underlying model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.

    Returns:
        The formatted request.
    """
    request = {
        **{k: v for k, v in self.config.items()},
        "messages": self._format_request_messages(messages, system_prompt),
        "stream": True,
    }
    try:
        request["model"] = request.pop(
            "model_id"
        )  # To be consisted with other models WriterConfig use 'model_id' arg, but Writer API wait for 'model' arg
    except KeyError as e:
        raise KeyError("Please specify a model ID. Use 'model_id' keyword argument.") from e

    # Writer don't support empty tools attribute
    if tool_specs:
        request["tools"] = [
            {
                "type": "function",
                "function": {
                    "name": tool_spec["name"],
                    "description": tool_spec["description"],
                    "parameters": tool_spec["inputSchema"]["json"],
                },
            }
            for tool_spec in tool_specs
        ]

    return request

get_config()

Get the Writer model configuration.

Returns:

Type Description
WriterConfig

The Writer model configuration.

Source code in strands/models/writer.py
75
76
77
78
79
80
81
82
@override
def get_config(self) -> WriterConfig:
    """Get the Writer model configuration.

    Returns:
        The Writer model configuration.
    """
    return self.config

stream(messages, tool_specs=None, system_prompt=None, *, tool_choice=None, **kwargs) async

Stream conversation with the Writer model.

Parameters:

Name Type Description Default
messages Messages

List of message objects to be processed by the model.

required
tool_specs Optional[list[ToolSpec]]

List of tool specifications to make available to the model.

None
system_prompt Optional[str]

System prompt to provide context to the model.

None
tool_choice ToolChoice | None

Selection strategy for tool invocation. Note: This parameter is accepted for interface consistency but is currently ignored for this model provider.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
AsyncGenerator[StreamEvent, None]

Formatted message chunks from the model.

Raises:

Type Description
ModelThrottledException

When the model service is throttling requests from the client.

Source code in strands/models/writer.py
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
@override
async def stream(
    self,
    messages: Messages,
    tool_specs: Optional[list[ToolSpec]] = None,
    system_prompt: Optional[str] = None,
    *,
    tool_choice: ToolChoice | None = None,
    **kwargs: Any,
) -> AsyncGenerator[StreamEvent, None]:
    """Stream conversation with the Writer model.

    Args:
        messages: List of message objects to be processed by the model.
        tool_specs: List of tool specifications to make available to the model.
        system_prompt: System prompt to provide context to the model.
        tool_choice: Selection strategy for tool invocation. **Note: This parameter is accepted for
            interface consistency but is currently ignored for this model provider.**
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Formatted message chunks from the model.

    Raises:
        ModelThrottledException: When the model service is throttling requests from the client.
    """
    warn_on_tool_choice_not_supported(tool_choice)

    logger.debug("formatting request")
    request = self.format_request(messages, tool_specs, system_prompt)
    logger.debug("request=<%s>", request)

    logger.debug("invoking model")
    try:
        response = await self.client.chat.chat(**request)
    except writerai.RateLimitError as e:
        raise ModelThrottledException(str(e)) from e

    yield self.format_chunk({"chunk_type": "message_start"})
    yield self.format_chunk({"chunk_type": "content_block_start", "data_type": "text"})

    tool_calls: dict[int, list[Any]] = {}

    async for chunk in response:
        if not getattr(chunk, "choices", None):
            continue
        choice = chunk.choices[0]

        if choice.delta.content:
            yield self.format_chunk(
                {"chunk_type": "content_block_delta", "data_type": "text", "data": choice.delta.content}
            )

        for tool_call in choice.delta.tool_calls or []:
            tool_calls.setdefault(tool_call.index, []).append(tool_call)

        if choice.finish_reason:
            break

    yield self.format_chunk({"chunk_type": "content_block_stop", "data_type": "text"})

    for tool_deltas in tool_calls.values():
        tool_start, tool_deltas = tool_deltas[0], tool_deltas[1:]
        yield self.format_chunk({"chunk_type": "content_block_start", "data_type": "tool", "data": tool_start})

        for tool_delta in tool_deltas:
            yield self.format_chunk({"chunk_type": "content_block_delta", "data_type": "tool", "data": tool_delta})

        yield self.format_chunk({"chunk_type": "content_block_stop", "data_type": "tool"})

    yield self.format_chunk({"chunk_type": "message_stop", "data": choice.finish_reason})

    # Iterating until the end to fetch metadata chunk
    async for chunk in response:
        _ = chunk

    yield self.format_chunk({"chunk_type": "metadata", "data": chunk.usage})

    logger.debug("finished streaming response from model")

structured_output(output_model, prompt, system_prompt=None, **kwargs) async

Get structured output from the model.

Parameters:

Name Type Description Default
output_model Type[T]

The output model to use for the agent.

required
prompt Messages

The prompt messages to use for the agent.

required
system_prompt Optional[str]

System prompt to provide context to the model.

None
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/models/writer.py
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
@override
async def structured_output(
    self, output_model: Type[T], prompt: Messages, system_prompt: Optional[str] = None, **kwargs: Any
) -> AsyncGenerator[dict[str, Union[T, Any]], None]:
    """Get structured output from the model.

    Args:
        output_model: The output model to use for the agent.
        prompt: The prompt messages to use for the agent.
        system_prompt: System prompt to provide context to the model.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    formatted_request = self.format_request(messages=prompt, tool_specs=None, system_prompt=system_prompt)
    formatted_request["response_format"] = {
        "type": "json_schema",
        "json_schema": {"schema": output_model.model_json_schema()},
    }
    formatted_request["stream"] = False
    formatted_request.pop("stream_options", None)

    response = await self.client.chat.chat(**formatted_request)

    try:
        content = response.choices[0].message.content.strip()
        yield {"output": output_model.model_validate_json(content)}
    except Exception as e:
        raise ValueError(f"Failed to parse or load content into model: {e}") from e

update_config(**model_config)

Update the Writer Model configuration with the provided arguments.

Parameters:

Name Type Description Default
**model_config Unpack[WriterConfig]

Configuration overrides.

{}
Source code in strands/models/writer.py
65
66
67
68
69
70
71
72
73
@override
def update_config(self, **model_config: Unpack[WriterConfig]) -> None:  # type: ignore[override]
    """Update the Writer Model configuration with the provided arguments.

    Args:
        **model_config: Configuration overrides.
    """
    validate_config_keys(model_config, self.WriterConfig)
    self.config.update(model_config)

validate_config_keys(config_dict, config_class)

Validate that config keys match the TypedDict fields.

Parameters:

Name Type Description Default
config_dict Mapping[str, Any]

Dictionary of configuration parameters

required
config_class Type

TypedDict class to validate against

required
Source code in strands/models/_validation.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
def validate_config_keys(config_dict: Mapping[str, Any], config_class: Type) -> None:
    """Validate that config keys match the TypedDict fields.

    Args:
        config_dict: Dictionary of configuration parameters
        config_class: TypedDict class to validate against
    """
    valid_keys = set(get_type_hints(config_class).keys())
    provided_keys = set(config_dict.keys())
    invalid_keys = provided_keys - valid_keys

    if invalid_keys:
        warnings.warn(
            f"Invalid configuration parameters: {sorted(invalid_keys)}."
            f"\nValid parameters are: {sorted(valid_keys)}."
            f"\n"
            f"\nSee https://github.com/strands-agents/sdk-python/issues/815",
            stacklevel=4,
        )

warn_on_tool_choice_not_supported(tool_choice)

Emits a warning if a tool choice is provided but not supported by the provider.

Parameters:

Name Type Description Default
tool_choice ToolChoice | None

the tool_choice provided to the provider

required
Source code in strands/models/_validation.py
32
33
34
35
36
37
38
39
40
41
42
def warn_on_tool_choice_not_supported(tool_choice: ToolChoice | None) -> None:
    """Emits a warning if a tool choice is provided but not supported by the provider.

    Args:
        tool_choice: the tool_choice provided to the provider
    """
    if tool_choice:
        warnings.warn(
            "A ToolChoice was provided to this provider but is not supported and will be ignored",
            stacklevel=4,
        )