Skip to content

strands.multiagent.swarm

Swarm Multi-Agent Pattern Implementation.

This module provides a collaborative agent orchestration system where agents work together as a team to solve complex tasks, with shared context and autonomous coordination.

Key Features: - Self-organizing agent teams with shared working memory - Tool-based coordination - Autonomous agent collaboration without central control - Dynamic task distribution based on agent capabilities - Collective intelligence through shared context - Human input via user interrupts raised in BeforeNodeCallEvent hooks and agent nodes

AgentState = JSONSerializableDict module-attribute

AttributeValue = Union[str, bool, float, int, List[str], List[bool], List[float], List[int], Sequence[str], Sequence[bool], Sequence[int], Sequence[float]] module-attribute

Messages = List[Message] module-attribute

A list of messages representing a conversation.

MultiAgentInput = str | list[ContentBlock] | list[InterruptResponseContent] module-attribute

_DEFAULT_SWARM_ID = 'default_swarm' module-attribute

logger = logging.getLogger(__name__) module-attribute

AfterMultiAgentInvocationEvent dataclass

Bases: BaseHookEvent

Event triggered after orchestrator execution completes.

Attributes:

Name Type Description
source MultiAgentBase

The multi-agent orchestrator instance

invocation_state dict[str, Any] | None

Configuration that user passes in

Source code in strands/experimental/hooks/multiagent/events.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
@dataclass
class AfterMultiAgentInvocationEvent(BaseHookEvent):
    """Event triggered after orchestrator execution completes.

    Attributes:
        source: The multi-agent orchestrator instance
        invocation_state: Configuration that user passes in
    """

    source: "MultiAgentBase"
    invocation_state: dict[str, Any] | None = None

    @property
    def should_reverse_callbacks(self) -> bool:
        """True to invoke callbacks in reverse order."""
        return True

should_reverse_callbacks property

True to invoke callbacks in reverse order.

AfterNodeCallEvent dataclass

Bases: BaseHookEvent

Event triggered after individual node execution completes.

Attributes:

Name Type Description
source MultiAgentBase

The multi-agent orchestrator instance

node_id str

ID of the node that just completed execution

invocation_state dict[str, Any] | None

Configuration that user passes in

Source code in strands/experimental/hooks/multiagent/events.py
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
@dataclass
class AfterNodeCallEvent(BaseHookEvent):
    """Event triggered after individual node execution completes.

    Attributes:
        source: The multi-agent orchestrator instance
        node_id: ID of the node that just completed execution
        invocation_state: Configuration that user passes in
    """

    source: "MultiAgentBase"
    node_id: str
    invocation_state: dict[str, Any] | None = None

    @property
    def should_reverse_callbacks(self) -> bool:
        """True to invoke callbacks in reverse order."""
        return True

should_reverse_callbacks property

True to invoke callbacks in reverse order.

Agent

Core Agent interface.

An agent orchestrates the following workflow:

  1. Receives user input
  2. Processes the input using a language model
  3. Decides whether to use tools to gather information or perform actions
  4. Executes those tools and receives results
  5. Continues reasoning with the new information
  6. Produces a final response
Source code in strands/agent/agent.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
class Agent:
    """Core Agent interface.

    An agent orchestrates the following workflow:

    1. Receives user input
    2. Processes the input using a language model
    3. Decides whether to use tools to gather information or perform actions
    4. Executes those tools and receives results
    5. Continues reasoning with the new information
    6. Produces a final response
    """

    # For backwards compatibility
    ToolCaller = _ToolCaller

    def __init__(
        self,
        model: Union[Model, str, None] = None,
        messages: Optional[Messages] = None,
        tools: Optional[list[Union[str, dict[str, str], "ToolProvider", Any]]] = None,
        system_prompt: Optional[str | list[SystemContentBlock]] = None,
        structured_output_model: Optional[Type[BaseModel]] = None,
        callback_handler: Optional[
            Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
        ] = _DEFAULT_CALLBACK_HANDLER,
        conversation_manager: Optional[ConversationManager] = None,
        record_direct_tool_call: bool = True,
        load_tools_from_directory: bool = False,
        trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
        *,
        agent_id: Optional[str] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        state: Optional[Union[AgentState, dict]] = None,
        hooks: Optional[list[HookProvider]] = None,
        session_manager: Optional[SessionManager] = None,
        tool_executor: Optional[ToolExecutor] = None,
    ):
        """Initialize the Agent with the specified configuration.

        Args:
            model: Provider for running inference or a string representing the model-id for Bedrock to use.
                Defaults to strands.models.BedrockModel if None.
            messages: List of initial messages to pre-load into the conversation.
                Defaults to an empty list if None.
            tools: List of tools to make available to the agent.
                Can be specified as:

                - String tool names (e.g., "retrieve")
                - File paths (e.g., "/path/to/tool.py")
                - Imported Python modules (e.g., from strands_tools import current_time)
                - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
                - ToolProvider instances for managed tool collections
                - Functions decorated with `@strands.tool` decorator.

                If provided, only these tools will be available. If None, all tools will be available.
            system_prompt: System prompt to guide model behavior.
                Can be a string or a list of SystemContentBlock objects for advanced features like caching.
                If None, the model will behave according to its default settings.
            structured_output_model: Pydantic model type(s) for structured output.
                When specified, all agent calls will attempt to return structured output of this type.
                This can be overridden on the agent invocation.
                Defaults to None (no structured output).
            callback_handler: Callback for processing events as they happen during agent execution.
                If not provided (using the default), a new PrintingCallbackHandler instance is created.
                If explicitly set to None, null_callback_handler is used.
            conversation_manager: Manager for conversation history and context window.
                Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
            record_direct_tool_call: Whether to record direct tool calls in message history.
                Defaults to True.
            load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
                Defaults to False.
            trace_attributes: Custom trace attributes to apply to the agent's trace span.
            agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
                Defaults to "default".
            name: name of the Agent
                Defaults to "Strands Agents".
            description: description of what the Agent does
                Defaults to None.
            state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
                Defaults to an empty AgentState object.
            hooks: hooks to be added to the agent hook registry
                Defaults to None.
            session_manager: Manager for handling agent sessions including conversation history and state.
                If provided, enables session-based persistence and state management.
            tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

        Raises:
            ValueError: If agent id contains path separators.
        """
        self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
        self.messages = messages if messages is not None else []
        # initializing self._system_prompt for backwards compatibility
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
        self._default_structured_output_model = structured_output_model
        self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
        self.name = name or _DEFAULT_AGENT_NAME
        self.description = description

        # If not provided, create a new PrintingCallbackHandler instance
        # If explicitly set to None, use null_callback_handler
        # Otherwise use the passed callback_handler
        self.callback_handler: Union[Callable[..., Any], PrintingCallbackHandler]
        if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
            self.callback_handler = PrintingCallbackHandler()
        elif callback_handler is None:
            self.callback_handler = null_callback_handler
        else:
            self.callback_handler = callback_handler

        self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

        # Process trace attributes to ensure they're of compatible types
        self.trace_attributes: dict[str, AttributeValue] = {}
        if trace_attributes:
            for k, v in trace_attributes.items():
                if isinstance(v, (str, int, float, bool)) or (
                    isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
                ):
                    self.trace_attributes[k] = v

        self.record_direct_tool_call = record_direct_tool_call
        self.load_tools_from_directory = load_tools_from_directory

        self.tool_registry = ToolRegistry()

        # Process tool list if provided
        if tools is not None:
            self.tool_registry.process_tools(tools)

        # Initialize tools and configuration
        self.tool_registry.initialize_tools(self.load_tools_from_directory)
        if load_tools_from_directory:
            self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

        self.event_loop_metrics = EventLoopMetrics()

        # Initialize tracer instance (no-op if not configured)
        self.tracer = get_tracer()
        self.trace_span: Optional[trace_api.Span] = None

        # Initialize agent state management
        if state is not None:
            if isinstance(state, dict):
                self.state = AgentState(state)
            elif isinstance(state, AgentState):
                self.state = state
            else:
                raise ValueError("state must be an AgentState object or a dict")
        else:
            self.state = AgentState()

        self.tool_caller = _ToolCaller(self)

        self.hooks = HookRegistry()

        self._interrupt_state = _InterruptState()

        # Initialize session management functionality
        self._session_manager = session_manager
        if self._session_manager:
            self.hooks.add_hook(self._session_manager)

        # Allow conversation_managers to subscribe to hooks
        self.hooks.add_hook(self.conversation_manager)

        self.tool_executor = tool_executor or ConcurrentToolExecutor()

        if hooks:
            for hook in hooks:
                self.hooks.add_hook(hook)
        self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

    @property
    def system_prompt(self) -> str | None:
        """Get the system prompt as a string for backwards compatibility.

        Returns the system prompt as a concatenated string when it contains text content,
        or None if no text content is present. This maintains backwards compatibility
        with existing code that expects system_prompt to be a string.

        Returns:
            The system prompt as a string, or None if no text content exists.
        """
        return self._system_prompt

    @system_prompt.setter
    def system_prompt(self, value: str | list[SystemContentBlock] | None) -> None:
        """Set the system prompt and update internal content representation.

        Accepts either a string or list of SystemContentBlock objects.
        When set, both the backwards-compatible string representation and the internal
        content block representation are updated to maintain consistency.

        Args:
            value: System prompt as string, list of SystemContentBlock objects, or None.
                  - str: Simple text prompt (most common use case)
                  - list[SystemContentBlock]: Content blocks with features like caching
                  - None: Clear the system prompt
        """
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(value)

    @property
    def tool(self) -> _ToolCaller:
        """Call tool as a function.

        Returns:
            Tool caller through which user can invoke tool as a function.

        Example:
            ```
            agent = Agent(tools=[calculator])
            agent.tool.calculator(...)
            ```
        """
        return self.tool_caller

    @property
    def tool_names(self) -> list[str]:
        """Get a list of all registered tool names.

        Returns:
            Names of all tools available to this agent.
        """
        all_tools = self.tool_registry.get_all_tools_config()
        return list(all_tools.keys())

    def __call__(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: `agent("hello!")`
        - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
        - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
        - No input: `agent()` - uses existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
                - structured_output: Parsed structured output when structured_output_model was specified
        """
        return run_async(
            lambda: self.invoke_async(
                prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
            )
        )

    async def invoke_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result: object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
        """
        events = self.stream_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
        async for event in events:
            _ = event

        return cast(AgentResult, event["result"])

    def structured_output(self, output_model: Type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history

        Raises:
            ValueError: If no conversation history or prompt is provided.
        """
        warnings.warn(
            "Agent.structured_output method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )

        return run_async(lambda: self.structured_output_async(output_model, prompt))

    async def structured_output_async(self, output_model: Type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent (will not be added to conversation history).

        Raises:
            ValueError: If no conversation history or prompt is provided.
        -
        """
        if self._interrupt_state.activated:
            raise RuntimeError("cannot call structured output during interrupt")

        warnings.warn(
            "Agent.structured_output_async method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))
        with self.tracer.tracer.start_as_current_span(
            "execute_structured_output", kind=trace_api.SpanKind.CLIENT
        ) as structured_output_span:
            try:
                if not self.messages and not prompt:
                    raise ValueError("No conversation history or prompt provided")

                temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

                structured_output_span.set_attributes(
                    {
                        "gen_ai.system": "strands-agents",
                        "gen_ai.agent.name": self.name,
                        "gen_ai.agent.id": self.agent_id,
                        "gen_ai.operation.name": "execute_structured_output",
                    }
                )
                if self.system_prompt:
                    structured_output_span.add_event(
                        "gen_ai.system.message",
                        attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                    )
                for message in temp_messages:
                    structured_output_span.add_event(
                        f"gen_ai.{message['role']}.message",
                        attributes={"role": message["role"], "content": serialize(message["content"])},
                    )
                events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
                async for event in events:
                    if isinstance(event, TypedEvent):
                        event.prepare(invocation_state={})
                        if event.is_callback_event:
                            self.callback_handler(**event.as_dict())

                structured_output_span.add_event(
                    "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
                )
                return event["output"]

            finally:
                await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

    def cleanup(self) -> None:
        """Clean up resources used by the agent.

        This method cleans up all tool providers that require explicit cleanup,
        such as MCP clients. It should be called when the agent is no longer needed
        to ensure proper resource cleanup.

        Note: This method uses a "belt and braces" approach with automatic cleanup
        through finalizers as a fallback, but explicit cleanup is recommended.
        """
        self.tool_registry.cleanup()

    def __del__(self) -> None:
        """Clean up resources when agent is garbage collected."""
        # __del__ is called even when an exception is thrown in the constructor,
        # so there is no guarantee tool_registry was set..
        if hasattr(self, "tool_registry"):
            self.tool_registry.cleanup()

    async def stream_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AsyncIterator[Any]:
        """Process a natural language prompt and yield events as an async iterator.

        This method provides an asynchronous interface for streaming agent events with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass to the event loop.[Deprecating]

        Yields:
            An async iterator that yields events. Each event is a dictionary containing
                information about the current state of processing, such as:

                - data: Text content being generated
                - complete: Whether this is the final chunk
                - current_tool_use: Information about tools being executed
                - And other event data provided by the callback handler

        Raises:
            Exception: Any exceptions from the agent invocation will be propagated to the caller.

        Example:
            ```python
            async for event in agent.stream_async("Analyze this data"):
                if "data" in event:
                    yield event["data"]
            ```
        """
        self._interrupt_state.resume(prompt)

        self.event_loop_metrics.reset_usage_metrics()

        merged_state = {}
        if kwargs:
            warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
            merged_state.update(kwargs)
            if invocation_state is not None:
                merged_state["invocation_state"] = invocation_state
        else:
            if invocation_state is not None:
                merged_state = invocation_state

        callback_handler = self.callback_handler
        if kwargs:
            callback_handler = kwargs.get("callback_handler", self.callback_handler)

        # Process input and get message to add (if any)
        messages = await self._convert_prompt_to_messages(prompt)

        self.trace_span = self._start_agent_trace_span(messages)

        with trace_api.use_span(self.trace_span):
            try:
                events = self._run_loop(messages, merged_state, structured_output_model)

                async for event in events:
                    event.prepare(invocation_state=merged_state)

                    if event.is_callback_event:
                        as_dict = event.as_dict()
                        callback_handler(**as_dict)
                        yield as_dict

                result = AgentResult(*event["stop"])
                callback_handler(result=result)
                yield AgentResultEvent(result=result).as_dict()

                self._end_agent_trace_span(response=result)

            except Exception as e:
                self._end_agent_trace_span(error=e)
                raise

    async def _run_loop(
        self,
        messages: Messages,
        invocation_state: dict[str, Any],
        structured_output_model: Type[BaseModel] | None = None,
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the agent's event loop with the given message and parameters.

        Args:
            messages: The input messages to add to the conversation.
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_model: Optional Pydantic model type for structured output.

        Yields:
            Events from the event loop cycle.
        """
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))

        agent_result: AgentResult | None = None
        try:
            yield InitEventLoopEvent()

            await self._append_messages(*messages)

            structured_output_context = StructuredOutputContext(
                structured_output_model or self._default_structured_output_model
            )

            # Execute the event loop cycle with retry logic for context limits
            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                # Signal from the model provider that the message sent by the user should be redacted,
                # likely due to a guardrail.
                if (
                    isinstance(event, ModelStreamChunkEvent)
                    and event.chunk
                    and event.chunk.get("redactContent")
                    and event.chunk["redactContent"].get("redactUserContentMessage")
                ):
                    self.messages[-1]["content"] = self._redact_user_content(
                        self.messages[-1]["content"], str(event.chunk["redactContent"]["redactUserContentMessage"])
                    )
                    if self._session_manager:
                        self._session_manager.redact_latest_message(self.messages[-1], self)
                yield event

            # Capture the result from the final event if available
            if isinstance(event, EventLoopStopEvent):
                agent_result = AgentResult(*event["stop"])

        finally:
            self.conversation_manager.apply_management(self)
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self, result=agent_result))

    async def _execute_event_loop_cycle(
        self, invocation_state: dict[str, Any], structured_output_context: StructuredOutputContext | None = None
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the event loop cycle with retry logic for context window limits.

        This internal method handles the execution of the event loop cycle and implements
        retry logic for handling context window overflow exceptions by reducing the
        conversation context and retrying.

        Args:
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_context: Optional structured output context for this invocation.

        Yields:
            Events of the loop cycle.
        """
        # Add `Agent` to invocation_state to keep backwards-compatibility
        invocation_state["agent"] = self

        if structured_output_context:
            structured_output_context.register_tool(self.tool_registry)

        try:
            events = event_loop_cycle(
                agent=self,
                invocation_state=invocation_state,
                structured_output_context=structured_output_context,
            )
            async for event in events:
                yield event

        except ContextWindowOverflowException as e:
            # Try reducing the context size and retrying
            self.conversation_manager.reduce_context(self, e=e)

            # Sync agent after reduce_context to keep conversation_manager_state up to date in the session
            if self._session_manager:
                self._session_manager.sync_agent(self)

            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                yield event

        finally:
            if structured_output_context:
                structured_output_context.cleanup(self.tool_registry)

    async def _convert_prompt_to_messages(self, prompt: AgentInput) -> Messages:
        if self._interrupt_state.activated:
            return []

        messages: Messages | None = None
        if prompt is not None:
            # Check if the latest message is toolUse
            if len(self.messages) > 0 and any("toolUse" in content for content in self.messages[-1]["content"]):
                # Add toolResult message after to have a valid conversation
                logger.info(
                    "Agents latest message is toolUse, appending a toolResult message to have valid conversation."
                )
                tool_use_ids = [
                    content["toolUse"]["toolUseId"] for content in self.messages[-1]["content"] if "toolUse" in content
                ]
                await self._append_messages(
                    {
                        "role": "user",
                        "content": generate_missing_tool_result_content(tool_use_ids),
                    }
                )
            if isinstance(prompt, str):
                # String input - convert to user message
                messages = [{"role": "user", "content": [{"text": prompt}]}]
            elif isinstance(prompt, list):
                if len(prompt) == 0:
                    # Empty list
                    messages = []
                # Check if all item in input list are dictionaries
                elif all(isinstance(item, dict) for item in prompt):
                    # Check if all items are messages
                    if all(all(key in item for key in Message.__annotations__.keys()) for item in prompt):
                        # Messages input - add all messages to conversation
                        messages = cast(Messages, prompt)

                    # Check if all items are content blocks
                    elif all(any(key in ContentBlock.__annotations__.keys() for key in item) for item in prompt):
                        # Treat as List[ContentBlock] input - convert to user message
                        # This allows invalid structures to be passed through to the model
                        messages = [{"role": "user", "content": cast(list[ContentBlock], prompt)}]
        else:
            messages = []
        if messages is None:
            raise ValueError("Input prompt must be of type: `str | list[Contentblock] | Messages | None`.")
        return messages

    def _start_agent_trace_span(self, messages: Messages) -> trace_api.Span:
        """Starts a trace span for the agent.

        Args:
            messages: The input messages.
        """
        model_id = self.model.config.get("model_id") if hasattr(self.model, "config") else None
        return self.tracer.start_agent_span(
            messages=messages,
            agent_name=self.name,
            model_id=model_id,
            tools=self.tool_names,
            system_prompt=self.system_prompt,
            custom_trace_attributes=self.trace_attributes,
            tools_config=self.tool_registry.get_all_tools_config(),
        )

    def _end_agent_trace_span(
        self,
        response: Optional[AgentResult] = None,
        error: Optional[Exception] = None,
    ) -> None:
        """Ends a trace span for the agent.

        Args:
            span: The span to end.
            response: Response to record as a trace attribute.
            error: Error to record as a trace attribute.
        """
        if self.trace_span:
            trace_attributes: dict[str, Any] = {
                "span": self.trace_span,
            }

            if response:
                trace_attributes["response"] = response
            if error:
                trace_attributes["error"] = error

            self.tracer.end_agent_span(**trace_attributes)

    def _initialize_system_prompt(
        self, system_prompt: str | list[SystemContentBlock] | None
    ) -> tuple[str | None, list[SystemContentBlock] | None]:
        """Initialize system prompt fields from constructor input.

        Maintains backwards compatibility by keeping system_prompt as str when string input
        provided, avoiding breaking existing consumers.

        Maps system_prompt input to both string and content block representations:
        - If string: system_prompt=string, _system_prompt_content=[{text: string}]
        - If list with text elements: system_prompt=concatenated_text, _system_prompt_content=list
        - If list without text elements: system_prompt=None, _system_prompt_content=list
        - If None: system_prompt=None, _system_prompt_content=None
        """
        if isinstance(system_prompt, str):
            return system_prompt, [{"text": system_prompt}]
        elif isinstance(system_prompt, list):
            # Concatenate all text elements for backwards compatibility, None if no text found
            text_parts = [block["text"] for block in system_prompt if "text" in block]
            system_prompt_str = "\n".join(text_parts) if text_parts else None
            return system_prompt_str, system_prompt
        else:
            return None, None

    async def _append_messages(self, *messages: Message) -> None:
        """Appends messages to history and invoke the callbacks for the MessageAddedEvent."""
        for message in messages:
            self.messages.append(message)
            await self.hooks.invoke_callbacks_async(MessageAddedEvent(agent=self, message=message))

    def _redact_user_content(self, content: list[ContentBlock], redact_message: str) -> list[ContentBlock]:
        """Redact user content preserving toolResult blocks.

        Args:
            content: content blocks to be redacted
            redact_message: redact message to be replaced

        Returns:
            Redacted content, as follows:
            - if the message contains at least a toolResult block,
                all toolResult blocks(s) are kept, redacting only the result content;
            - otherwise, the entire content of the message is replaced
                with a single text block with the redact message.
        """
        redacted_content = []
        for block in content:
            if "toolResult" in block:
                block["toolResult"]["content"] = [{"text": redact_message}]
                redacted_content.append(block)

        if not redacted_content:
            # Text content is added only if no toolResult blocks were found
            redacted_content = [{"text": redact_message}]

        return redacted_content

system_prompt property writable

Get the system prompt as a string for backwards compatibility.

Returns the system prompt as a concatenated string when it contains text content, or None if no text content is present. This maintains backwards compatibility with existing code that expects system_prompt to be a string.

Returns:

Type Description
str | None

The system prompt as a string, or None if no text content exists.

tool property

Call tool as a function.

Returns:

Type Description
_ToolCaller

Tool caller through which user can invoke tool as a function.

Example
agent = Agent(tools=[calculator])
agent.tool.calculator(...)

tool_names property

Get a list of all registered tool names.

Returns:

Type Description
list[str]

Names of all tools available to this agent.

__call__(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: agent("hello!") - ContentBlock list: agent([{"text": "hello"}, {"image": {...}}]) - Message list: agent([{"role": "user", "content": [{"text": "hello"}]}]) - No input: agent() - uses existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Type Description
AgentResult

Result object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
  • structured_output: Parsed structured output when structured_output_model was specified
Source code in strands/agent/agent.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def __call__(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: `agent("hello!")`
    - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
    - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
    - No input: `agent()` - uses existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
            - structured_output: Parsed structured output when structured_output_model was specified
    """
    return run_async(
        lambda: self.invoke_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
    )

__del__()

Clean up resources when agent is garbage collected.

Source code in strands/agent/agent.py
514
515
516
517
518
519
def __del__(self) -> None:
    """Clean up resources when agent is garbage collected."""
    # __del__ is called even when an exception is thrown in the constructor,
    # so there is no guarantee tool_registry was set..
    if hasattr(self, "tool_registry"):
        self.tool_registry.cleanup()

__init__(model=None, messages=None, tools=None, system_prompt=None, structured_output_model=None, callback_handler=_DEFAULT_CALLBACK_HANDLER, conversation_manager=None, record_direct_tool_call=True, load_tools_from_directory=False, trace_attributes=None, *, agent_id=None, name=None, description=None, state=None, hooks=None, session_manager=None, tool_executor=None)

Initialize the Agent with the specified configuration.

Parameters:

Name Type Description Default
model Union[Model, str, None]

Provider for running inference or a string representing the model-id for Bedrock to use. Defaults to strands.models.BedrockModel if None.

None
messages Optional[Messages]

List of initial messages to pre-load into the conversation. Defaults to an empty list if None.

None
tools Optional[list[Union[str, dict[str, str], ToolProvider, Any]]]

List of tools to make available to the agent. Can be specified as:

  • String tool names (e.g., "retrieve")
  • File paths (e.g., "/path/to/tool.py")
  • Imported Python modules (e.g., from strands_tools import current_time)
  • Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
  • ToolProvider instances for managed tool collections
  • Functions decorated with @strands.tool decorator.

If provided, only these tools will be available. If None, all tools will be available.

None
system_prompt Optional[str | list[SystemContentBlock]]

System prompt to guide model behavior. Can be a string or a list of SystemContentBlock objects for advanced features like caching. If None, the model will behave according to its default settings.

None
structured_output_model Optional[Type[BaseModel]]

Pydantic model type(s) for structured output. When specified, all agent calls will attempt to return structured output of this type. This can be overridden on the agent invocation. Defaults to None (no structured output).

None
callback_handler Optional[Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]]

Callback for processing events as they happen during agent execution. If not provided (using the default), a new PrintingCallbackHandler instance is created. If explicitly set to None, null_callback_handler is used.

_DEFAULT_CALLBACK_HANDLER
conversation_manager Optional[ConversationManager]

Manager for conversation history and context window. Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.

None
record_direct_tool_call bool

Whether to record direct tool calls in message history. Defaults to True.

True
load_tools_from_directory bool

Whether to load and automatically reload tools in the ./tools/ directory. Defaults to False.

False
trace_attributes Optional[Mapping[str, AttributeValue]]

Custom trace attributes to apply to the agent's trace span.

None
agent_id Optional[str]

Optional ID for the agent, useful for session management and multi-agent scenarios. Defaults to "default".

None
name Optional[str]

name of the Agent Defaults to "Strands Agents".

None
description Optional[str]

description of what the Agent does Defaults to None.

None
state Optional[Union[AgentState, dict]]

stateful information for the agent. Can be either an AgentState object, or a json serializable dict. Defaults to an empty AgentState object.

None
hooks Optional[list[HookProvider]]

hooks to be added to the agent hook registry Defaults to None.

None
session_manager Optional[SessionManager]

Manager for handling agent sessions including conversation history and state. If provided, enables session-based persistence and state management.

None
tool_executor Optional[ToolExecutor]

Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

None

Raises:

Type Description
ValueError

If agent id contains path separators.

Source code in strands/agent/agent.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def __init__(
    self,
    model: Union[Model, str, None] = None,
    messages: Optional[Messages] = None,
    tools: Optional[list[Union[str, dict[str, str], "ToolProvider", Any]]] = None,
    system_prompt: Optional[str | list[SystemContentBlock]] = None,
    structured_output_model: Optional[Type[BaseModel]] = None,
    callback_handler: Optional[
        Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
    ] = _DEFAULT_CALLBACK_HANDLER,
    conversation_manager: Optional[ConversationManager] = None,
    record_direct_tool_call: bool = True,
    load_tools_from_directory: bool = False,
    trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
    *,
    agent_id: Optional[str] = None,
    name: Optional[str] = None,
    description: Optional[str] = None,
    state: Optional[Union[AgentState, dict]] = None,
    hooks: Optional[list[HookProvider]] = None,
    session_manager: Optional[SessionManager] = None,
    tool_executor: Optional[ToolExecutor] = None,
):
    """Initialize the Agent with the specified configuration.

    Args:
        model: Provider for running inference or a string representing the model-id for Bedrock to use.
            Defaults to strands.models.BedrockModel if None.
        messages: List of initial messages to pre-load into the conversation.
            Defaults to an empty list if None.
        tools: List of tools to make available to the agent.
            Can be specified as:

            - String tool names (e.g., "retrieve")
            - File paths (e.g., "/path/to/tool.py")
            - Imported Python modules (e.g., from strands_tools import current_time)
            - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
            - ToolProvider instances for managed tool collections
            - Functions decorated with `@strands.tool` decorator.

            If provided, only these tools will be available. If None, all tools will be available.
        system_prompt: System prompt to guide model behavior.
            Can be a string or a list of SystemContentBlock objects for advanced features like caching.
            If None, the model will behave according to its default settings.
        structured_output_model: Pydantic model type(s) for structured output.
            When specified, all agent calls will attempt to return structured output of this type.
            This can be overridden on the agent invocation.
            Defaults to None (no structured output).
        callback_handler: Callback for processing events as they happen during agent execution.
            If not provided (using the default), a new PrintingCallbackHandler instance is created.
            If explicitly set to None, null_callback_handler is used.
        conversation_manager: Manager for conversation history and context window.
            Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
        record_direct_tool_call: Whether to record direct tool calls in message history.
            Defaults to True.
        load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
            Defaults to False.
        trace_attributes: Custom trace attributes to apply to the agent's trace span.
        agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
            Defaults to "default".
        name: name of the Agent
            Defaults to "Strands Agents".
        description: description of what the Agent does
            Defaults to None.
        state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
            Defaults to an empty AgentState object.
        hooks: hooks to be added to the agent hook registry
            Defaults to None.
        session_manager: Manager for handling agent sessions including conversation history and state.
            If provided, enables session-based persistence and state management.
        tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

    Raises:
        ValueError: If agent id contains path separators.
    """
    self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
    self.messages = messages if messages is not None else []
    # initializing self._system_prompt for backwards compatibility
    self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
    self._default_structured_output_model = structured_output_model
    self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
    self.name = name or _DEFAULT_AGENT_NAME
    self.description = description

    # If not provided, create a new PrintingCallbackHandler instance
    # If explicitly set to None, use null_callback_handler
    # Otherwise use the passed callback_handler
    self.callback_handler: Union[Callable[..., Any], PrintingCallbackHandler]
    if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
        self.callback_handler = PrintingCallbackHandler()
    elif callback_handler is None:
        self.callback_handler = null_callback_handler
    else:
        self.callback_handler = callback_handler

    self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

    # Process trace attributes to ensure they're of compatible types
    self.trace_attributes: dict[str, AttributeValue] = {}
    if trace_attributes:
        for k, v in trace_attributes.items():
            if isinstance(v, (str, int, float, bool)) or (
                isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
            ):
                self.trace_attributes[k] = v

    self.record_direct_tool_call = record_direct_tool_call
    self.load_tools_from_directory = load_tools_from_directory

    self.tool_registry = ToolRegistry()

    # Process tool list if provided
    if tools is not None:
        self.tool_registry.process_tools(tools)

    # Initialize tools and configuration
    self.tool_registry.initialize_tools(self.load_tools_from_directory)
    if load_tools_from_directory:
        self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

    self.event_loop_metrics = EventLoopMetrics()

    # Initialize tracer instance (no-op if not configured)
    self.tracer = get_tracer()
    self.trace_span: Optional[trace_api.Span] = None

    # Initialize agent state management
    if state is not None:
        if isinstance(state, dict):
            self.state = AgentState(state)
        elif isinstance(state, AgentState):
            self.state = state
        else:
            raise ValueError("state must be an AgentState object or a dict")
    else:
        self.state = AgentState()

    self.tool_caller = _ToolCaller(self)

    self.hooks = HookRegistry()

    self._interrupt_state = _InterruptState()

    # Initialize session management functionality
    self._session_manager = session_manager
    if self._session_manager:
        self.hooks.add_hook(self._session_manager)

    # Allow conversation_managers to subscribe to hooks
    self.hooks.add_hook(self.conversation_manager)

    self.tool_executor = tool_executor or ConcurrentToolExecutor()

    if hooks:
        for hook in hooks:
            self.hooks.add_hook(hook)
    self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

cleanup()

Clean up resources used by the agent.

This method cleans up all tool providers that require explicit cleanup, such as MCP clients. It should be called when the agent is no longer needed to ensure proper resource cleanup.

Note: This method uses a "belt and braces" approach with automatic cleanup through finalizers as a fallback, but explicit cleanup is recommended.

Source code in strands/agent/agent.py
502
503
504
505
506
507
508
509
510
511
512
def cleanup(self) -> None:
    """Clean up resources used by the agent.

    This method cleans up all tool providers that require explicit cleanup,
    such as MCP clients. It should be called when the agent is no longer needed
    to ensure proper resource cleanup.

    Note: This method uses a "belt and braces" approach with automatic cleanup
    through finalizers as a fallback, but explicit cleanup is recommended.
    """
    self.tool_registry.cleanup()

invoke_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Name Type Description
Result AgentResult

object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
Source code in strands/agent/agent.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
async def invoke_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result: object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
    """
    events = self.stream_async(
        prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
    )
    async for event in events:
        _ = event

    return cast(AgentResult, event["result"])

stream_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt and yield events as an async iterator.

This method provides an asynchronous interface for streaming agent events with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass to the event loop.[Deprecating]

{}

Yields:

Type Description
AsyncIterator[Any]

An async iterator that yields events. Each event is a dictionary containing information about the current state of processing, such as:

  • data: Text content being generated
  • complete: Whether this is the final chunk
  • current_tool_use: Information about tools being executed
  • And other event data provided by the callback handler

Raises:

Type Description
Exception

Any exceptions from the agent invocation will be propagated to the caller.

Example
async for event in agent.stream_async("Analyze this data"):
    if "data" in event:
        yield event["data"]
Source code in strands/agent/agent.py
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
async def stream_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AsyncIterator[Any]:
    """Process a natural language prompt and yield events as an async iterator.

    This method provides an asynchronous interface for streaming agent events with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass to the event loop.[Deprecating]

    Yields:
        An async iterator that yields events. Each event is a dictionary containing
            information about the current state of processing, such as:

            - data: Text content being generated
            - complete: Whether this is the final chunk
            - current_tool_use: Information about tools being executed
            - And other event data provided by the callback handler

    Raises:
        Exception: Any exceptions from the agent invocation will be propagated to the caller.

    Example:
        ```python
        async for event in agent.stream_async("Analyze this data"):
            if "data" in event:
                yield event["data"]
        ```
    """
    self._interrupt_state.resume(prompt)

    self.event_loop_metrics.reset_usage_metrics()

    merged_state = {}
    if kwargs:
        warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
        merged_state.update(kwargs)
        if invocation_state is not None:
            merged_state["invocation_state"] = invocation_state
    else:
        if invocation_state is not None:
            merged_state = invocation_state

    callback_handler = self.callback_handler
    if kwargs:
        callback_handler = kwargs.get("callback_handler", self.callback_handler)

    # Process input and get message to add (if any)
    messages = await self._convert_prompt_to_messages(prompt)

    self.trace_span = self._start_agent_trace_span(messages)

    with trace_api.use_span(self.trace_span):
        try:
            events = self._run_loop(messages, merged_state, structured_output_model)

            async for event in events:
                event.prepare(invocation_state=merged_state)

                if event.is_callback_event:
                    as_dict = event.as_dict()
                    callback_handler(**as_dict)
                    yield as_dict

            result = AgentResult(*event["stop"])
            callback_handler(result=result)
            yield AgentResultEvent(result=result).as_dict()

            self._end_agent_trace_span(response=result)

        except Exception as e:
            self._end_agent_trace_span(error=e)
            raise

structured_output(output_model, prompt=None)

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model Type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

Source code in strands/agent/agent.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def structured_output(self, output_model: Type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history

    Raises:
        ValueError: If no conversation history or prompt is provided.
    """
    warnings.warn(
        "Agent.structured_output method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )

    return run_async(lambda: self.structured_output_async(output_model, prompt))

structured_output_async(output_model, prompt=None) async

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model Type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent (will not be added to conversation history).

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

-

Source code in strands/agent/agent.py
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
async def structured_output_async(self, output_model: Type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent (will not be added to conversation history).

    Raises:
        ValueError: If no conversation history or prompt is provided.
    -
    """
    if self._interrupt_state.activated:
        raise RuntimeError("cannot call structured output during interrupt")

    warnings.warn(
        "Agent.structured_output_async method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )
    await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))
    with self.tracer.tracer.start_as_current_span(
        "execute_structured_output", kind=trace_api.SpanKind.CLIENT
    ) as structured_output_span:
        try:
            if not self.messages and not prompt:
                raise ValueError("No conversation history or prompt provided")

            temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

            structured_output_span.set_attributes(
                {
                    "gen_ai.system": "strands-agents",
                    "gen_ai.agent.name": self.name,
                    "gen_ai.agent.id": self.agent_id,
                    "gen_ai.operation.name": "execute_structured_output",
                }
            )
            if self.system_prompt:
                structured_output_span.add_event(
                    "gen_ai.system.message",
                    attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                )
            for message in temp_messages:
                structured_output_span.add_event(
                    f"gen_ai.{message['role']}.message",
                    attributes={"role": message["role"], "content": serialize(message["content"])},
                )
            events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
            async for event in events:
                if isinstance(event, TypedEvent):
                    event.prepare(invocation_state={})
                    if event.is_callback_event:
                        self.callback_handler(**event.as_dict())

            structured_output_span.add_event(
                "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
            )
            return event["output"]

        finally:
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

BeforeMultiAgentInvocationEvent dataclass

Bases: BaseHookEvent

Event triggered before orchestrator execution starts.

Attributes:

Name Type Description
source MultiAgentBase

The multi-agent orchestrator instance

invocation_state dict[str, Any] | None

Configuration that user passes in

Source code in strands/experimental/hooks/multiagent/events.py
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
@dataclass
class BeforeMultiAgentInvocationEvent(BaseHookEvent):
    """Event triggered before orchestrator execution starts.

    Attributes:
        source: The multi-agent orchestrator instance
        invocation_state: Configuration that user passes in
    """

    source: "MultiAgentBase"
    invocation_state: dict[str, Any] | None = None

BeforeNodeCallEvent dataclass

Bases: BaseHookEvent, _Interruptible

Event triggered before individual node execution starts.

Attributes:

Name Type Description
source MultiAgentBase

The multi-agent orchestrator instance

node_id str

ID of the node about to execute

invocation_state dict[str, Any] | None

Configuration that user passes in

cancel_node bool | str

A user defined message that when set, will cancel the node execution with status FAILED. The message will be emitted under a MultiAgentNodeCancel event. If set to True, Strands will cancel the node using a default cancel message.

Source code in strands/experimental/hooks/multiagent/events.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
@dataclass
class BeforeNodeCallEvent(BaseHookEvent, _Interruptible):
    """Event triggered before individual node execution starts.

    Attributes:
        source: The multi-agent orchestrator instance
        node_id: ID of the node about to execute
        invocation_state: Configuration that user passes in
        cancel_node: A user defined message that when set, will cancel the node execution with status FAILED.
            The message will be emitted under a MultiAgentNodeCancel event. If set to `True`, Strands will cancel the
            node using a default cancel message.
    """

    source: "MultiAgentBase"
    node_id: str
    invocation_state: dict[str, Any] | None = None
    cancel_node: bool | str = False

    def _can_write(self, name: str) -> bool:
        return name in ["cancel_node"]

    @override
    def _interrupt_id(self, name: str) -> str:
        """Unique id for the interrupt.

        Args:
            name: User defined name for the interrupt.

        Returns:
            Interrupt id.
        """
        node_id = uuid.uuid5(uuid.NAMESPACE_OID, self.node_id)
        call_id = uuid.uuid5(uuid.NAMESPACE_OID, name)
        return f"v1:before_node_call:{node_id}:{call_id}"

ContentBlock

Bases: TypedDict

A block of content for a message that you pass to, or receive from, a model.

Attributes:

Name Type Description
cachePoint CachePoint

A cache point configuration to optimize conversation history.

document DocumentContent

A document to include in the message.

guardContent GuardContent

Contains the content to assess with the guardrail.

image ImageContent

Image to include in the message.

reasoningContent ReasoningContentBlock

Contains content regarding the reasoning that is carried out by the model.

text str

Text to include in the message.

toolResult ToolResult

The result for a tool request that a model makes.

toolUse ToolUse

Information about a tool use request from a model.

video VideoContent

Video to include in the message.

citationsContent CitationsContentBlock

Contains the citations for a document.

Source code in strands/types/content.py
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
class ContentBlock(TypedDict, total=False):
    """A block of content for a message that you pass to, or receive from, a model.

    Attributes:
        cachePoint: A cache point configuration to optimize conversation history.
        document: A document to include in the message.
        guardContent: Contains the content to assess with the guardrail.
        image: Image to include in the message.
        reasoningContent: Contains content regarding the reasoning that is carried out by the model.
        text: Text to include in the message.
        toolResult: The result for a tool request that a model makes.
        toolUse: Information about a tool use request from a model.
        video: Video to include in the message.
        citationsContent: Contains the citations for a document.
    """

    cachePoint: CachePoint
    document: DocumentContent
    guardContent: GuardContent
    image: ImageContent
    reasoningContent: ReasoningContentBlock
    text: str
    toolResult: ToolResult
    toolUse: ToolUse
    video: VideoContent
    citationsContent: CitationsContentBlock

HookProvider

Bases: Protocol

Protocol for objects that provide hook callbacks to an agent.

Hook providers offer a composable way to extend agent functionality by subscribing to various events in the agent lifecycle. This protocol enables building reusable components that can hook into agent events.

Example
class MyHookProvider(HookProvider):
    def register_hooks(self, registry: HookRegistry) -> None:
        registry.add_callback(StartRequestEvent, self.on_request_start)
        registry.add_callback(EndRequestEvent, self.on_request_end)

agent = Agent(hooks=[MyHookProvider()])
Source code in strands/hooks/registry.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
@runtime_checkable
class HookProvider(Protocol):
    """Protocol for objects that provide hook callbacks to an agent.

    Hook providers offer a composable way to extend agent functionality by
    subscribing to various events in the agent lifecycle. This protocol enables
    building reusable components that can hook into agent events.

    Example:
        ```python
        class MyHookProvider(HookProvider):
            def register_hooks(self, registry: HookRegistry) -> None:
                registry.add_callback(StartRequestEvent, self.on_request_start)
                registry.add_callback(EndRequestEvent, self.on_request_end)

        agent = Agent(hooks=[MyHookProvider()])
        ```
    """

    def register_hooks(self, registry: "HookRegistry", **kwargs: Any) -> None:
        """Register callback functions for specific event types.

        Args:
            registry: The hook registry to register callbacks with.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        ...

register_hooks(registry, **kwargs)

Register callback functions for specific event types.

Parameters:

Name Type Description Default
registry HookRegistry

The hook registry to register callbacks with.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/hooks/registry.py
106
107
108
109
110
111
112
113
def register_hooks(self, registry: "HookRegistry", **kwargs: Any) -> None:
    """Register callback functions for specific event types.

    Args:
        registry: The hook registry to register callbacks with.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    ...

HookRegistry

Registry for managing hook callbacks associated with event types.

The HookRegistry maintains a mapping of event types to callback functions and provides methods for registering callbacks and invoking them when events occur.

The registry handles callback ordering, including reverse ordering for cleanup events, and provides type-safe event dispatching.

Source code in strands/hooks/registry.py
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
class HookRegistry:
    """Registry for managing hook callbacks associated with event types.

    The HookRegistry maintains a mapping of event types to callback functions
    and provides methods for registering callbacks and invoking them when
    events occur.

    The registry handles callback ordering, including reverse ordering for
    cleanup events, and provides type-safe event dispatching.
    """

    def __init__(self) -> None:
        """Initialize an empty hook registry."""
        self._registered_callbacks: dict[Type, list[HookCallback]] = {}

    def add_callback(self, event_type: Type[TEvent], callback: HookCallback[TEvent]) -> None:
        """Register a callback function for a specific event type.

        Args:
            event_type: The class type of events this callback should handle.
            callback: The callback function to invoke when events of this type occur.

        Example:
            ```python
            def my_handler(event: StartRequestEvent):
                print("Request started")

            registry.add_callback(StartRequestEvent, my_handler)
            ```
        """
        # Related issue: https://github.com/strands-agents/sdk-python/issues/330
        if event_type.__name__ == "AgentInitializedEvent" and inspect.iscoroutinefunction(callback):
            raise ValueError("AgentInitializedEvent can only be registered with a synchronous callback")

        callbacks = self._registered_callbacks.setdefault(event_type, [])
        callbacks.append(callback)

    def add_hook(self, hook: HookProvider) -> None:
        """Register all callbacks from a hook provider.

        This method allows bulk registration of callbacks by delegating to
        the hook provider's register_hooks method. This is the preferred
        way to register multiple related callbacks.

        Args:
            hook: The hook provider containing callbacks to register.

        Example:
            ```python
            class MyHooks(HookProvider):
                def register_hooks(self, registry: HookRegistry):
                    registry.add_callback(StartRequestEvent, self.on_start)
                    registry.add_callback(EndRequestEvent, self.on_end)

            registry.add_hook(MyHooks())
            ```
        """
        hook.register_hooks(self)

    async def invoke_callbacks_async(self, event: TInvokeEvent) -> tuple[TInvokeEvent, list[Interrupt]]:
        """Invoke all registered callbacks for the given event.

        This method finds all callbacks registered for the event's type and
        invokes them in the appropriate order. For events with should_reverse_callbacks=True,
        callbacks are invoked in reverse registration order. Any exceptions raised by callback
        functions will propagate to the caller.

        Additionally, this method aggregates interrupts raised by the user to instantiate human-in-the-loop workflows.

        Args:
            event: The event to dispatch to registered callbacks.

        Returns:
            The event dispatched to registered callbacks and any interrupts raised by the user.

        Raises:
            ValueError: If interrupt name is used more than once.

        Example:
            ```python
            event = StartRequestEvent(agent=my_agent)
            await registry.invoke_callbacks_async(event)
            ```
        """
        interrupts: dict[str, Interrupt] = {}

        for callback in self.get_callbacks_for(event):
            try:
                if inspect.iscoroutinefunction(callback):
                    await callback(event)
                else:
                    callback(event)

            except InterruptException as exception:
                interrupt = exception.interrupt
                if interrupt.name in interrupts:
                    message = f"interrupt_name=<{interrupt.name}> | interrupt name used more than once"
                    logger.error(message)
                    raise ValueError(message) from exception

                # Each callback is allowed to raise their own interrupt.
                interrupts[interrupt.name] = interrupt

        return event, list(interrupts.values())

    def invoke_callbacks(self, event: TInvokeEvent) -> tuple[TInvokeEvent, list[Interrupt]]:
        """Invoke all registered callbacks for the given event.

        This method finds all callbacks registered for the event's type and
        invokes them in the appropriate order. For events with should_reverse_callbacks=True,
        callbacks are invoked in reverse registration order. Any exceptions raised by callback
        functions will propagate to the caller.

        Additionally, this method aggregates interrupts raised by the user to instantiate human-in-the-loop workflows.

        Args:
            event: The event to dispatch to registered callbacks.

        Returns:
            The event dispatched to registered callbacks and any interrupts raised by the user.

        Raises:
            RuntimeError: If at least one callback is async.
            ValueError: If interrupt name is used more than once.

        Example:
            ```python
            event = StartRequestEvent(agent=my_agent)
            registry.invoke_callbacks(event)
            ```
        """
        callbacks = list(self.get_callbacks_for(event))
        interrupts: dict[str, Interrupt] = {}

        if any(inspect.iscoroutinefunction(callback) for callback in callbacks):
            raise RuntimeError(f"event=<{event}> | use invoke_callbacks_async to invoke async callback")

        for callback in callbacks:
            try:
                callback(event)
            except InterruptException as exception:
                interrupt = exception.interrupt
                if interrupt.name in interrupts:
                    message = f"interrupt_name=<{interrupt.name}> | interrupt name used more than once"
                    logger.error(message)
                    raise ValueError(message) from exception

                # Each callback is allowed to raise their own interrupt.
                interrupts[interrupt.name] = interrupt

        return event, list(interrupts.values())

    def has_callbacks(self) -> bool:
        """Check if the registry has any registered callbacks.

        Returns:
            True if there are any registered callbacks, False otherwise.

        Example:
            ```python
            if registry.has_callbacks():
                print("Registry has callbacks registered")
            ```
        """
        return bool(self._registered_callbacks)

    def get_callbacks_for(self, event: TEvent) -> Generator[HookCallback[TEvent], None, None]:
        """Get callbacks registered for the given event in the appropriate order.

        This method returns callbacks in registration order for normal events,
        or reverse registration order for events that have should_reverse_callbacks=True.
        This enables proper cleanup ordering for teardown events.

        Args:
            event: The event to get callbacks for.

        Yields:
            Callback functions registered for this event type, in the appropriate order.

        Example:
            ```python
            event = EndRequestEvent(agent=my_agent)
            for callback in registry.get_callbacks_for(event):
                callback(event)
            ```
        """
        event_type = type(event)

        callbacks = self._registered_callbacks.get(event_type, [])
        if event.should_reverse_callbacks:
            yield from reversed(callbacks)
        else:
            yield from callbacks

__init__()

Initialize an empty hook registry.

Source code in strands/hooks/registry.py
155
156
157
def __init__(self) -> None:
    """Initialize an empty hook registry."""
    self._registered_callbacks: dict[Type, list[HookCallback]] = {}

add_callback(event_type, callback)

Register a callback function for a specific event type.

Parameters:

Name Type Description Default
event_type Type[TEvent]

The class type of events this callback should handle.

required
callback HookCallback[TEvent]

The callback function to invoke when events of this type occur.

required
Example
def my_handler(event: StartRequestEvent):
    print("Request started")

registry.add_callback(StartRequestEvent, my_handler)
Source code in strands/hooks/registry.py
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
def add_callback(self, event_type: Type[TEvent], callback: HookCallback[TEvent]) -> None:
    """Register a callback function for a specific event type.

    Args:
        event_type: The class type of events this callback should handle.
        callback: The callback function to invoke when events of this type occur.

    Example:
        ```python
        def my_handler(event: StartRequestEvent):
            print("Request started")

        registry.add_callback(StartRequestEvent, my_handler)
        ```
    """
    # Related issue: https://github.com/strands-agents/sdk-python/issues/330
    if event_type.__name__ == "AgentInitializedEvent" and inspect.iscoroutinefunction(callback):
        raise ValueError("AgentInitializedEvent can only be registered with a synchronous callback")

    callbacks = self._registered_callbacks.setdefault(event_type, [])
    callbacks.append(callback)

add_hook(hook)

Register all callbacks from a hook provider.

This method allows bulk registration of callbacks by delegating to the hook provider's register_hooks method. This is the preferred way to register multiple related callbacks.

Parameters:

Name Type Description Default
hook HookProvider

The hook provider containing callbacks to register.

required
Example
class MyHooks(HookProvider):
    def register_hooks(self, registry: HookRegistry):
        registry.add_callback(StartRequestEvent, self.on_start)
        registry.add_callback(EndRequestEvent, self.on_end)

registry.add_hook(MyHooks())
Source code in strands/hooks/registry.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
def add_hook(self, hook: HookProvider) -> None:
    """Register all callbacks from a hook provider.

    This method allows bulk registration of callbacks by delegating to
    the hook provider's register_hooks method. This is the preferred
    way to register multiple related callbacks.

    Args:
        hook: The hook provider containing callbacks to register.

    Example:
        ```python
        class MyHooks(HookProvider):
            def register_hooks(self, registry: HookRegistry):
                registry.add_callback(StartRequestEvent, self.on_start)
                registry.add_callback(EndRequestEvent, self.on_end)

        registry.add_hook(MyHooks())
        ```
    """
    hook.register_hooks(self)

get_callbacks_for(event)

Get callbacks registered for the given event in the appropriate order.

This method returns callbacks in registration order for normal events, or reverse registration order for events that have should_reverse_callbacks=True. This enables proper cleanup ordering for teardown events.

Parameters:

Name Type Description Default
event TEvent

The event to get callbacks for.

required

Yields:

Type Description
HookCallback[TEvent]

Callback functions registered for this event type, in the appropriate order.

Example
event = EndRequestEvent(agent=my_agent)
for callback in registry.get_callbacks_for(event):
    callback(event)
Source code in strands/hooks/registry.py
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
def get_callbacks_for(self, event: TEvent) -> Generator[HookCallback[TEvent], None, None]:
    """Get callbacks registered for the given event in the appropriate order.

    This method returns callbacks in registration order for normal events,
    or reverse registration order for events that have should_reverse_callbacks=True.
    This enables proper cleanup ordering for teardown events.

    Args:
        event: The event to get callbacks for.

    Yields:
        Callback functions registered for this event type, in the appropriate order.

    Example:
        ```python
        event = EndRequestEvent(agent=my_agent)
        for callback in registry.get_callbacks_for(event):
            callback(event)
        ```
    """
    event_type = type(event)

    callbacks = self._registered_callbacks.get(event_type, [])
    if event.should_reverse_callbacks:
        yield from reversed(callbacks)
    else:
        yield from callbacks

has_callbacks()

Check if the registry has any registered callbacks.

Returns:

Type Description
bool

True if there are any registered callbacks, False otherwise.

Example
if registry.has_callbacks():
    print("Registry has callbacks registered")
Source code in strands/hooks/registry.py
296
297
298
299
300
301
302
303
304
305
306
307
308
def has_callbacks(self) -> bool:
    """Check if the registry has any registered callbacks.

    Returns:
        True if there are any registered callbacks, False otherwise.

    Example:
        ```python
        if registry.has_callbacks():
            print("Registry has callbacks registered")
        ```
    """
    return bool(self._registered_callbacks)

invoke_callbacks(event)

Invoke all registered callbacks for the given event.

This method finds all callbacks registered for the event's type and invokes them in the appropriate order. For events with should_reverse_callbacks=True, callbacks are invoked in reverse registration order. Any exceptions raised by callback functions will propagate to the caller.

Additionally, this method aggregates interrupts raised by the user to instantiate human-in-the-loop workflows.

Parameters:

Name Type Description Default
event TInvokeEvent

The event to dispatch to registered callbacks.

required

Returns:

Type Description
tuple[TInvokeEvent, list[Interrupt]]

The event dispatched to registered callbacks and any interrupts raised by the user.

Raises:

Type Description
RuntimeError

If at least one callback is async.

ValueError

If interrupt name is used more than once.

Example
event = StartRequestEvent(agent=my_agent)
registry.invoke_callbacks(event)
Source code in strands/hooks/registry.py
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def invoke_callbacks(self, event: TInvokeEvent) -> tuple[TInvokeEvent, list[Interrupt]]:
    """Invoke all registered callbacks for the given event.

    This method finds all callbacks registered for the event's type and
    invokes them in the appropriate order. For events with should_reverse_callbacks=True,
    callbacks are invoked in reverse registration order. Any exceptions raised by callback
    functions will propagate to the caller.

    Additionally, this method aggregates interrupts raised by the user to instantiate human-in-the-loop workflows.

    Args:
        event: The event to dispatch to registered callbacks.

    Returns:
        The event dispatched to registered callbacks and any interrupts raised by the user.

    Raises:
        RuntimeError: If at least one callback is async.
        ValueError: If interrupt name is used more than once.

    Example:
        ```python
        event = StartRequestEvent(agent=my_agent)
        registry.invoke_callbacks(event)
        ```
    """
    callbacks = list(self.get_callbacks_for(event))
    interrupts: dict[str, Interrupt] = {}

    if any(inspect.iscoroutinefunction(callback) for callback in callbacks):
        raise RuntimeError(f"event=<{event}> | use invoke_callbacks_async to invoke async callback")

    for callback in callbacks:
        try:
            callback(event)
        except InterruptException as exception:
            interrupt = exception.interrupt
            if interrupt.name in interrupts:
                message = f"interrupt_name=<{interrupt.name}> | interrupt name used more than once"
                logger.error(message)
                raise ValueError(message) from exception

            # Each callback is allowed to raise their own interrupt.
            interrupts[interrupt.name] = interrupt

    return event, list(interrupts.values())

invoke_callbacks_async(event) async

Invoke all registered callbacks for the given event.

This method finds all callbacks registered for the event's type and invokes them in the appropriate order. For events with should_reverse_callbacks=True, callbacks are invoked in reverse registration order. Any exceptions raised by callback functions will propagate to the caller.

Additionally, this method aggregates interrupts raised by the user to instantiate human-in-the-loop workflows.

Parameters:

Name Type Description Default
event TInvokeEvent

The event to dispatch to registered callbacks.

required

Returns:

Type Description
tuple[TInvokeEvent, list[Interrupt]]

The event dispatched to registered callbacks and any interrupts raised by the user.

Raises:

Type Description
ValueError

If interrupt name is used more than once.

Example
event = StartRequestEvent(agent=my_agent)
await registry.invoke_callbacks_async(event)
Source code in strands/hooks/registry.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
async def invoke_callbacks_async(self, event: TInvokeEvent) -> tuple[TInvokeEvent, list[Interrupt]]:
    """Invoke all registered callbacks for the given event.

    This method finds all callbacks registered for the event's type and
    invokes them in the appropriate order. For events with should_reverse_callbacks=True,
    callbacks are invoked in reverse registration order. Any exceptions raised by callback
    functions will propagate to the caller.

    Additionally, this method aggregates interrupts raised by the user to instantiate human-in-the-loop workflows.

    Args:
        event: The event to dispatch to registered callbacks.

    Returns:
        The event dispatched to registered callbacks and any interrupts raised by the user.

    Raises:
        ValueError: If interrupt name is used more than once.

    Example:
        ```python
        event = StartRequestEvent(agent=my_agent)
        await registry.invoke_callbacks_async(event)
        ```
    """
    interrupts: dict[str, Interrupt] = {}

    for callback in self.get_callbacks_for(event):
        try:
            if inspect.iscoroutinefunction(callback):
                await callback(event)
            else:
                callback(event)

        except InterruptException as exception:
            interrupt = exception.interrupt
            if interrupt.name in interrupts:
                message = f"interrupt_name=<{interrupt.name}> | interrupt name used more than once"
                logger.error(message)
                raise ValueError(message) from exception

            # Each callback is allowed to raise their own interrupt.
            interrupts[interrupt.name] = interrupt

    return event, list(interrupts.values())

Interrupt dataclass

Represents an interrupt that can pause agent execution for human-in-the-loop workflows.

Attributes:

Name Type Description
id str

Unique identifier.

name str

User defined name.

reason Any

User provided reason for raising the interrupt.

response Any

Human response provided when resuming the agent after an interrupt.

Source code in strands/interrupt.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
@dataclass
class Interrupt:
    """Represents an interrupt that can pause agent execution for human-in-the-loop workflows.

    Attributes:
        id: Unique identifier.
        name: User defined name.
        reason: User provided reason for raising the interrupt.
        response: Human response provided when resuming the agent after an interrupt.
    """

    id: str
    name: str
    reason: Any = None
    response: Any = None

    def to_dict(self) -> dict[str, Any]:
        """Serialize to dict for session management."""
        return asdict(self)

to_dict()

Serialize to dict for session management.

Source code in strands/interrupt.py
27
28
29
def to_dict(self) -> dict[str, Any]:
    """Serialize to dict for session management."""
    return asdict(self)

Metrics

Bases: TypedDict

Performance metrics for model interactions.

Attributes:

Name Type Description
latencyMs int

Latency of the model request in milliseconds.

timeToFirstByteMs int

Latency from sending model request to first content chunk (contentBlockDelta or contentBlockStart) from the model in milliseconds.

Source code in strands/types/event_loop.py
26
27
28
29
30
31
32
33
34
35
36
class Metrics(TypedDict, total=False):
    """Performance metrics for model interactions.

    Attributes:
        latencyMs (int): Latency of the model request in milliseconds.
        timeToFirstByteMs (int): Latency from sending model request to first
            content chunk (contentBlockDelta or contentBlockStart) from the model in milliseconds.
    """

    latencyMs: Required[int]
    timeToFirstByteMs: int

MultiAgentBase

Bases: ABC

Base class for multi-agent helpers.

This class integrates with existing Strands Agent instances and provides multi-agent orchestration capabilities.

Attributes:

Name Type Description
id str

Unique MultiAgent id for session management,etc.

Source code in strands/multiagent/base.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
class MultiAgentBase(ABC):
    """Base class for multi-agent helpers.

    This class integrates with existing Strands Agent instances and provides
    multi-agent orchestration capabilities.

    Attributes:
        id: Unique MultiAgent id for session management,etc.
    """

    id: str

    @abstractmethod
    async def invoke_async(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> MultiAgentResult:
        """Invoke asynchronously.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Additional keyword arguments passed to underlying agents.
        """
        raise NotImplementedError("invoke_async not implemented")

    async def stream_async(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> AsyncIterator[dict[str, Any]]:
        """Stream events during multi-agent execution.

        Default implementation executes invoke_async and yields the result as a single event.
        Subclasses can override this method to provide true streaming capabilities.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Additional keyword arguments passed to underlying agents.

        Yields:
            Dictionary events containing multi-agent execution information including:
            - Multi-agent coordination events (node start/complete, handoffs)
            - Forwarded single-agent events with node context
            - Final result event
        """
        # Default implementation for backward compatibility
        # Execute invoke_async and yield the result as a single event
        result = await self.invoke_async(task, invocation_state, **kwargs)
        yield {"result": result}

    def __call__(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> MultiAgentResult:
        """Invoke synchronously.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Additional keyword arguments passed to underlying agents.
        """
        if invocation_state is None:
            invocation_state = {}

        if kwargs:
            invocation_state.update(kwargs)
            warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)

        return run_async(lambda: self.invoke_async(task, invocation_state))

    def serialize_state(self) -> dict[str, Any]:
        """Return a JSON-serializable snapshot of the orchestrator state."""
        raise NotImplementedError

    def deserialize_state(self, payload: dict[str, Any]) -> None:
        """Restore orchestrator state from a session dict."""
        raise NotImplementedError

    def _parse_trace_attributes(
        self, attributes: Mapping[str, AttributeValue] | None = None
    ) -> dict[str, AttributeValue]:
        trace_attributes: dict[str, AttributeValue] = {}
        if attributes:
            for k, v in attributes.items():
                if isinstance(v, (str, int, float, bool)) or (
                    isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
                ):
                    trace_attributes[k] = v
        return trace_attributes

__call__(task, invocation_state=None, **kwargs)

Invoke synchronously.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Additional keyword arguments passed to underlying agents.

{}
Source code in strands/multiagent/base.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def __call__(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> MultiAgentResult:
    """Invoke synchronously.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Additional keyword arguments passed to underlying agents.
    """
    if invocation_state is None:
        invocation_state = {}

    if kwargs:
        invocation_state.update(kwargs)
        warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)

    return run_async(lambda: self.invoke_async(task, invocation_state))

deserialize_state(payload)

Restore orchestrator state from a session dict.

Source code in strands/multiagent/base.py
252
253
254
def deserialize_state(self, payload: dict[str, Any]) -> None:
    """Restore orchestrator state from a session dict."""
    raise NotImplementedError

invoke_async(task, invocation_state=None, **kwargs) abstractmethod async

Invoke asynchronously.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Additional keyword arguments passed to underlying agents.

{}
Source code in strands/multiagent/base.py
189
190
191
192
193
194
195
196
197
198
199
200
201
@abstractmethod
async def invoke_async(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> MultiAgentResult:
    """Invoke asynchronously.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Additional keyword arguments passed to underlying agents.
    """
    raise NotImplementedError("invoke_async not implemented")

serialize_state()

Return a JSON-serializable snapshot of the orchestrator state.

Source code in strands/multiagent/base.py
248
249
250
def serialize_state(self) -> dict[str, Any]:
    """Return a JSON-serializable snapshot of the orchestrator state."""
    raise NotImplementedError

stream_async(task, invocation_state=None, **kwargs) async

Stream events during multi-agent execution.

Default implementation executes invoke_async and yields the result as a single event. Subclasses can override this method to provide true streaming capabilities.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Additional keyword arguments passed to underlying agents.

{}

Yields:

Type Description
AsyncIterator[dict[str, Any]]

Dictionary events containing multi-agent execution information including:

AsyncIterator[dict[str, Any]]
  • Multi-agent coordination events (node start/complete, handoffs)
AsyncIterator[dict[str, Any]]
  • Forwarded single-agent events with node context
AsyncIterator[dict[str, Any]]
  • Final result event
Source code in strands/multiagent/base.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def stream_async(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> AsyncIterator[dict[str, Any]]:
    """Stream events during multi-agent execution.

    Default implementation executes invoke_async and yields the result as a single event.
    Subclasses can override this method to provide true streaming capabilities.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Additional keyword arguments passed to underlying agents.

    Yields:
        Dictionary events containing multi-agent execution information including:
        - Multi-agent coordination events (node start/complete, handoffs)
        - Forwarded single-agent events with node context
        - Final result event
    """
    # Default implementation for backward compatibility
    # Execute invoke_async and yield the result as a single event
    result = await self.invoke_async(task, invocation_state, **kwargs)
    yield {"result": result}

MultiAgentHandoffEvent

Bases: TypedEvent

Event emitted during node transitions in multi-agent systems.

Supports both single handoffs (Swarm) and batch transitions (Graph). For Swarm: Single node-to-node handoffs with a message. For Graph: Batch transitions where multiple nodes complete and multiple nodes begin.

Source code in strands/types/_events.py
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
class MultiAgentHandoffEvent(TypedEvent):
    """Event emitted during node transitions in multi-agent systems.

    Supports both single handoffs (Swarm) and batch transitions (Graph).
    For Swarm: Single node-to-node handoffs with a message.
    For Graph: Batch transitions where multiple nodes complete and multiple nodes begin.
    """

    def __init__(
        self,
        from_node_ids: list[str],
        to_node_ids: list[str],
        message: str | None = None,
    ) -> None:
        """Initialize with handoff information.

        Args:
            from_node_ids: List of node ID(s) completing execution.
                - Swarm: Single-element list ["agent_a"]
                - Graph: Multi-element list ["node1", "node2"]
            to_node_ids: List of node ID(s) beginning execution.
                - Swarm: Single-element list ["agent_b"]
                - Graph: Multi-element list ["node3", "node4"]
            message: Optional message explaining the transition (typically used in Swarm)

        Examples:
            Swarm handoff: MultiAgentHandoffEvent(["researcher"], ["analyst"], "Need calculations")
            Graph batch: MultiAgentHandoffEvent(["node1", "node2"], ["node3", "node4"])
        """
        event_data = {
            "type": "multiagent_handoff",
            "from_node_ids": from_node_ids,
            "to_node_ids": to_node_ids,
        }

        if message is not None:
            event_data["message"] = message

        super().__init__(event_data)

__init__(from_node_ids, to_node_ids, message=None)

Initialize with handoff information.

Parameters:

Name Type Description Default
from_node_ids list[str]

List of node ID(s) completing execution. - Swarm: Single-element list ["agent_a"] - Graph: Multi-element list ["node1", "node2"]

required
to_node_ids list[str]

List of node ID(s) beginning execution. - Swarm: Single-element list ["agent_b"] - Graph: Multi-element list ["node3", "node4"]

required
message str | None

Optional message explaining the transition (typically used in Swarm)

None

Examples:

Swarm handoff: MultiAgentHandoffEvent(["researcher"], ["analyst"], "Need calculations") Graph batch: MultiAgentHandoffEvent(["node1", "node2"], ["node3", "node4"])

Source code in strands/types/_events.py
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
def __init__(
    self,
    from_node_ids: list[str],
    to_node_ids: list[str],
    message: str | None = None,
) -> None:
    """Initialize with handoff information.

    Args:
        from_node_ids: List of node ID(s) completing execution.
            - Swarm: Single-element list ["agent_a"]
            - Graph: Multi-element list ["node1", "node2"]
        to_node_ids: List of node ID(s) beginning execution.
            - Swarm: Single-element list ["agent_b"]
            - Graph: Multi-element list ["node3", "node4"]
        message: Optional message explaining the transition (typically used in Swarm)

    Examples:
        Swarm handoff: MultiAgentHandoffEvent(["researcher"], ["analyst"], "Need calculations")
        Graph batch: MultiAgentHandoffEvent(["node1", "node2"], ["node3", "node4"])
    """
    event_data = {
        "type": "multiagent_handoff",
        "from_node_ids": from_node_ids,
        "to_node_ids": to_node_ids,
    }

    if message is not None:
        event_data["message"] = message

    super().__init__(event_data)

MultiAgentInitializedEvent dataclass

Bases: BaseHookEvent

Event triggered when multi-agent orchestrator initialized.

Attributes:

Name Type Description
source MultiAgentBase

The multi-agent orchestrator instance

invocation_state dict[str, Any] | None

Configuration that user passes in

Source code in strands/experimental/hooks/multiagent/events.py
21
22
23
24
25
26
27
28
29
30
31
@dataclass
class MultiAgentInitializedEvent(BaseHookEvent):
    """Event triggered when multi-agent orchestrator initialized.

    Attributes:
        source: The multi-agent orchestrator instance
        invocation_state: Configuration that user passes in
    """

    source: "MultiAgentBase"
    invocation_state: dict[str, Any] | None = None

MultiAgentNodeCancelEvent

Bases: TypedEvent

Event emitted when a user cancels node execution from their BeforeNodeCallEvent hook.

Source code in strands/types/_events.py
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
class MultiAgentNodeCancelEvent(TypedEvent):
    """Event emitted when a user cancels node execution from their BeforeNodeCallEvent hook."""

    def __init__(self, node_id: str, message: str) -> None:
        """Initialize with cancel message.

        Args:
            node_id: Unique identifier for the node.
            message: The node cancellation message.
        """
        super().__init__(
            {
                "type": "multiagent_node_cancel",
                "node_id": node_id,
                "message": message,
            }
        )

__init__(node_id, message)

Initialize with cancel message.

Parameters:

Name Type Description Default
node_id str

Unique identifier for the node.

required
message str

The node cancellation message.

required
Source code in strands/types/_events.py
532
533
534
535
536
537
538
539
540
541
542
543
544
545
def __init__(self, node_id: str, message: str) -> None:
    """Initialize with cancel message.

    Args:
        node_id: Unique identifier for the node.
        message: The node cancellation message.
    """
    super().__init__(
        {
            "type": "multiagent_node_cancel",
            "node_id": node_id,
            "message": message,
        }
    )

MultiAgentNodeInterruptEvent

Bases: TypedEvent

Event emitted when a node is interrupted.

Source code in strands/types/_events.py
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
class MultiAgentNodeInterruptEvent(TypedEvent):
    """Event emitted when a node is interrupted."""

    def __init__(self, node_id: str, interrupts: list[Interrupt]) -> None:
        """Set interrupt in the event payload.

        Args:
            node_id: Unique identifier for the node generating the event.
            interrupts: Interrupts raised by user.
        """
        super().__init__(
            {
                "type": "multiagent_node_interrupt",
                "node_id": node_id,
                "interrupts": interrupts,
            }
        )

    @property
    def interrupts(self) -> list[Interrupt]:
        """The interrupt instances."""
        return cast(list[Interrupt], self["interrupts"])

interrupts property

The interrupt instances.

__init__(node_id, interrupts)

Set interrupt in the event payload.

Parameters:

Name Type Description Default
node_id str

Unique identifier for the node generating the event.

required
interrupts list[Interrupt]

Interrupts raised by user.

required
Source code in strands/types/_events.py
551
552
553
554
555
556
557
558
559
560
561
562
563
564
def __init__(self, node_id: str, interrupts: list[Interrupt]) -> None:
    """Set interrupt in the event payload.

    Args:
        node_id: Unique identifier for the node generating the event.
        interrupts: Interrupts raised by user.
    """
    super().__init__(
        {
            "type": "multiagent_node_interrupt",
            "node_id": node_id,
            "interrupts": interrupts,
        }
    )

MultiAgentNodeStartEvent

Bases: TypedEvent

Event emitted when a node begins execution in multi-agent context.

Source code in strands/types/_events.py
428
429
430
431
432
433
434
435
436
437
438
class MultiAgentNodeStartEvent(TypedEvent):
    """Event emitted when a node begins execution in multi-agent context."""

    def __init__(self, node_id: str, node_type: str) -> None:
        """Initialize with node information.

        Args:
            node_id: Unique identifier for the node
            node_type: Type of node ("agent", "swarm", "graph")
        """
        super().__init__({"type": "multiagent_node_start", "node_id": node_id, "node_type": node_type})

__init__(node_id, node_type)

Initialize with node information.

Parameters:

Name Type Description Default
node_id str

Unique identifier for the node

required
node_type str

Type of node ("agent", "swarm", "graph")

required
Source code in strands/types/_events.py
431
432
433
434
435
436
437
438
def __init__(self, node_id: str, node_type: str) -> None:
    """Initialize with node information.

    Args:
        node_id: Unique identifier for the node
        node_type: Type of node ("agent", "swarm", "graph")
    """
    super().__init__({"type": "multiagent_node_start", "node_id": node_id, "node_type": node_type})

MultiAgentNodeStopEvent

Bases: TypedEvent

Event emitted when a node stops execution.

Similar to EventLoopStopEvent but for individual nodes in multi-agent orchestration. Provides the complete NodeResult which contains execution details, metrics, and status.

Source code in strands/types/_events.py
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
class MultiAgentNodeStopEvent(TypedEvent):
    """Event emitted when a node stops execution.

    Similar to EventLoopStopEvent but for individual nodes in multi-agent orchestration.
    Provides the complete NodeResult which contains execution details, metrics, and status.
    """

    def __init__(
        self,
        node_id: str,
        node_result: "NodeResult",
    ) -> None:
        """Initialize with stop information.

        Args:
            node_id: Unique identifier for the node
            node_result: Complete result from the node execution containing result,
                execution_time, status, accumulated_usage, accumulated_metrics, and execution_count
        """
        super().__init__(
            {
                "type": "multiagent_node_stop",
                "node_id": node_id,
                "node_result": node_result,
            }
        )

__init__(node_id, node_result)

Initialize with stop information.

Parameters:

Name Type Description Default
node_id str

Unique identifier for the node

required
node_result NodeResult

Complete result from the node execution containing result, execution_time, status, accumulated_usage, accumulated_metrics, and execution_count

required
Source code in strands/types/_events.py
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
def __init__(
    self,
    node_id: str,
    node_result: "NodeResult",
) -> None:
    """Initialize with stop information.

    Args:
        node_id: Unique identifier for the node
        node_result: Complete result from the node execution containing result,
            execution_time, status, accumulated_usage, accumulated_metrics, and execution_count
    """
    super().__init__(
        {
            "type": "multiagent_node_stop",
            "node_id": node_id,
            "node_result": node_result,
        }
    )

MultiAgentNodeStreamEvent

Bases: TypedEvent

Event emitted during node execution - forwards agent events with node context.

Source code in strands/types/_events.py
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
class MultiAgentNodeStreamEvent(TypedEvent):
    """Event emitted during node execution - forwards agent events with node context."""

    def __init__(self, node_id: str, agent_event: dict[str, Any]) -> None:
        """Initialize with node context and agent event.

        Args:
            node_id: Unique identifier for the node generating the event
            agent_event: The original agent event data
        """
        super().__init__(
            {
                "type": "multiagent_node_stream",
                "node_id": node_id,
                "event": agent_event,  # Nest agent event to avoid field conflicts
            }
        )

__init__(node_id, agent_event)

Initialize with node context and agent event.

Parameters:

Name Type Description Default
node_id str

Unique identifier for the node generating the event

required
agent_event dict[str, Any]

The original agent event data

required
Source code in strands/types/_events.py
513
514
515
516
517
518
519
520
521
522
523
524
525
526
def __init__(self, node_id: str, agent_event: dict[str, Any]) -> None:
    """Initialize with node context and agent event.

    Args:
        node_id: Unique identifier for the node generating the event
        agent_event: The original agent event data
    """
    super().__init__(
        {
            "type": "multiagent_node_stream",
            "node_id": node_id,
            "event": agent_event,  # Nest agent event to avoid field conflicts
        }
    )

MultiAgentResult dataclass

Result from multi-agent execution with accumulated metrics.

Source code in strands/multiagent/base.py
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
@dataclass
class MultiAgentResult:
    """Result from multi-agent execution with accumulated metrics."""

    status: Status = Status.PENDING
    results: dict[str, NodeResult] = field(default_factory=lambda: {})
    accumulated_usage: Usage = field(default_factory=lambda: Usage(inputTokens=0, outputTokens=0, totalTokens=0))
    accumulated_metrics: Metrics = field(default_factory=lambda: Metrics(latencyMs=0))
    execution_count: int = 0
    execution_time: int = 0
    interrupts: list[Interrupt] = field(default_factory=list)

    @classmethod
    def from_dict(cls, data: dict[str, Any]) -> "MultiAgentResult":
        """Rehydrate a MultiAgentResult from persisted JSON."""
        if data.get("type") != "multiagent_result":
            raise TypeError(f"MultiAgentResult.from_dict: unexpected type {data.get('type')!r}")

        results = {k: NodeResult.from_dict(v) for k, v in data.get("results", {}).items()}
        usage = _parse_usage(data.get("accumulated_usage", {}))
        metrics = _parse_metrics(data.get("accumulated_metrics", {}))

        interrupts = []
        for interrupt_data in data.get("interrupts", []):
            interrupts.append(Interrupt(**interrupt_data))

        multiagent_result = cls(
            status=Status(data["status"]),
            results=results,
            accumulated_usage=usage,
            accumulated_metrics=metrics,
            execution_count=int(data.get("execution_count", 0)),
            execution_time=int(data.get("execution_time", 0)),
            interrupts=interrupts,
        )
        return multiagent_result

    def to_dict(self) -> dict[str, Any]:
        """Convert MultiAgentResult to JSON-serializable dict."""
        return {
            "type": "multiagent_result",
            "status": self.status.value,
            "results": {k: v.to_dict() for k, v in self.results.items()},
            "accumulated_usage": self.accumulated_usage,
            "accumulated_metrics": self.accumulated_metrics,
            "execution_count": self.execution_count,
            "execution_time": self.execution_time,
            "interrupts": [interrupt.to_dict() for interrupt in self.interrupts],
        }

from_dict(data) classmethod

Rehydrate a MultiAgentResult from persisted JSON.

Source code in strands/multiagent/base.py
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "MultiAgentResult":
    """Rehydrate a MultiAgentResult from persisted JSON."""
    if data.get("type") != "multiagent_result":
        raise TypeError(f"MultiAgentResult.from_dict: unexpected type {data.get('type')!r}")

    results = {k: NodeResult.from_dict(v) for k, v in data.get("results", {}).items()}
    usage = _parse_usage(data.get("accumulated_usage", {}))
    metrics = _parse_metrics(data.get("accumulated_metrics", {}))

    interrupts = []
    for interrupt_data in data.get("interrupts", []):
        interrupts.append(Interrupt(**interrupt_data))

    multiagent_result = cls(
        status=Status(data["status"]),
        results=results,
        accumulated_usage=usage,
        accumulated_metrics=metrics,
        execution_count=int(data.get("execution_count", 0)),
        execution_time=int(data.get("execution_time", 0)),
        interrupts=interrupts,
    )
    return multiagent_result

to_dict()

Convert MultiAgentResult to JSON-serializable dict.

Source code in strands/multiagent/base.py
163
164
165
166
167
168
169
170
171
172
173
174
def to_dict(self) -> dict[str, Any]:
    """Convert MultiAgentResult to JSON-serializable dict."""
    return {
        "type": "multiagent_result",
        "status": self.status.value,
        "results": {k: v.to_dict() for k, v in self.results.items()},
        "accumulated_usage": self.accumulated_usage,
        "accumulated_metrics": self.accumulated_metrics,
        "execution_count": self.execution_count,
        "execution_time": self.execution_time,
        "interrupts": [interrupt.to_dict() for interrupt in self.interrupts],
    }

MultiAgentResultEvent

Bases: TypedEvent

Event emitted when multi-agent execution completes with final result.

Source code in strands/types/_events.py
416
417
418
419
420
421
422
423
424
425
class MultiAgentResultEvent(TypedEvent):
    """Event emitted when multi-agent execution completes with final result."""

    def __init__(self, result: "MultiAgentResult") -> None:
        """Initialize with multi-agent result.

        Args:
            result: The final result from multi-agent execution (SwarmResult, GraphResult, etc.)
        """
        super().__init__({"type": "multiagent_result", "result": result})

__init__(result)

Initialize with multi-agent result.

Parameters:

Name Type Description Default
result MultiAgentResult

The final result from multi-agent execution (SwarmResult, GraphResult, etc.)

required
Source code in strands/types/_events.py
419
420
421
422
423
424
425
def __init__(self, result: "MultiAgentResult") -> None:
    """Initialize with multi-agent result.

    Args:
        result: The final result from multi-agent execution (SwarmResult, GraphResult, etc.)
    """
    super().__init__({"type": "multiagent_result", "result": result})

NodeResult dataclass

Unified result from node execution - handles both Agent and nested MultiAgentBase results.

Source code in strands/multiagent/base.py
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@dataclass
class NodeResult:
    """Unified result from node execution - handles both Agent and nested MultiAgentBase results."""

    # Core result data - single AgentResult, nested MultiAgentResult, or Exception
    result: Union[AgentResult, "MultiAgentResult", Exception]

    # Execution metadata
    execution_time: int = 0
    status: Status = Status.PENDING

    # Accumulated metrics from this node and all children
    accumulated_usage: Usage = field(default_factory=lambda: Usage(inputTokens=0, outputTokens=0, totalTokens=0))
    accumulated_metrics: Metrics = field(default_factory=lambda: Metrics(latencyMs=0))
    execution_count: int = 0
    interrupts: list[Interrupt] = field(default_factory=list)

    def get_agent_results(self) -> list[AgentResult]:
        """Get all AgentResult objects from this node, flattened if nested."""
        if isinstance(self.result, Exception):
            return []  # No agent results for exceptions
        elif isinstance(self.result, AgentResult):
            return [self.result]
        else:
            # Flatten nested results from MultiAgentResult
            flattened = []
            for nested_node_result in self.result.results.values():
                flattened.extend(nested_node_result.get_agent_results())
            return flattened

    def to_dict(self) -> dict[str, Any]:
        """Convert NodeResult to JSON-serializable dict, ignoring state field."""
        if isinstance(self.result, Exception):
            result_data: dict[str, Any] = {"type": "exception", "message": str(self.result)}
        elif isinstance(self.result, AgentResult):
            result_data = self.result.to_dict()
        else:
            # MultiAgentResult case
            result_data = self.result.to_dict()

        return {
            "result": result_data,
            "execution_time": self.execution_time,
            "status": self.status.value,
            "accumulated_usage": self.accumulated_usage,
            "accumulated_metrics": self.accumulated_metrics,
            "execution_count": self.execution_count,
            "interrupts": [interrupt.to_dict() for interrupt in self.interrupts],
        }

    @classmethod
    def from_dict(cls, data: dict[str, Any]) -> "NodeResult":
        """Rehydrate a NodeResult from persisted JSON."""
        if "result" not in data:
            raise TypeError("NodeResult.from_dict: missing 'result'")
        raw = data["result"]

        result: Union[AgentResult, "MultiAgentResult", Exception]
        if isinstance(raw, dict) and raw.get("type") == "agent_result":
            result = AgentResult.from_dict(raw)
        elif isinstance(raw, dict) and raw.get("type") == "exception":
            result = Exception(str(raw.get("message", "node failed")))
        elif isinstance(raw, dict) and raw.get("type") == "multiagent_result":
            result = MultiAgentResult.from_dict(raw)
        else:
            raise TypeError(f"NodeResult.from_dict: unsupported result payload: {raw!r}")

        usage = _parse_usage(data.get("accumulated_usage", {}))
        metrics = _parse_metrics(data.get("accumulated_metrics", {}))

        interrupts = []
        for interrupt_data in data.get("interrupts", []):
            interrupts.append(Interrupt(**interrupt_data))

        return cls(
            result=result,
            execution_time=int(data.get("execution_time", 0)),
            status=Status(data.get("status", "pending")),
            accumulated_usage=usage,
            accumulated_metrics=metrics,
            execution_count=int(data.get("execution_count", 0)),
            interrupts=interrupts,
        )

from_dict(data) classmethod

Rehydrate a NodeResult from persisted JSON.

Source code in strands/multiagent/base.py
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "NodeResult":
    """Rehydrate a NodeResult from persisted JSON."""
    if "result" not in data:
        raise TypeError("NodeResult.from_dict: missing 'result'")
    raw = data["result"]

    result: Union[AgentResult, "MultiAgentResult", Exception]
    if isinstance(raw, dict) and raw.get("type") == "agent_result":
        result = AgentResult.from_dict(raw)
    elif isinstance(raw, dict) and raw.get("type") == "exception":
        result = Exception(str(raw.get("message", "node failed")))
    elif isinstance(raw, dict) and raw.get("type") == "multiagent_result":
        result = MultiAgentResult.from_dict(raw)
    else:
        raise TypeError(f"NodeResult.from_dict: unsupported result payload: {raw!r}")

    usage = _parse_usage(data.get("accumulated_usage", {}))
    metrics = _parse_metrics(data.get("accumulated_metrics", {}))

    interrupts = []
    for interrupt_data in data.get("interrupts", []):
        interrupts.append(Interrupt(**interrupt_data))

    return cls(
        result=result,
        execution_time=int(data.get("execution_time", 0)),
        status=Status(data.get("status", "pending")),
        accumulated_usage=usage,
        accumulated_metrics=metrics,
        execution_count=int(data.get("execution_count", 0)),
        interrupts=interrupts,
    )

get_agent_results()

Get all AgentResult objects from this node, flattened if nested.

Source code in strands/multiagent/base.py
58
59
60
61
62
63
64
65
66
67
68
69
def get_agent_results(self) -> list[AgentResult]:
    """Get all AgentResult objects from this node, flattened if nested."""
    if isinstance(self.result, Exception):
        return []  # No agent results for exceptions
    elif isinstance(self.result, AgentResult):
        return [self.result]
    else:
        # Flatten nested results from MultiAgentResult
        flattened = []
        for nested_node_result in self.result.results.values():
            flattened.extend(nested_node_result.get_agent_results())
        return flattened

to_dict()

Convert NodeResult to JSON-serializable dict, ignoring state field.

Source code in strands/multiagent/base.py
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def to_dict(self) -> dict[str, Any]:
    """Convert NodeResult to JSON-serializable dict, ignoring state field."""
    if isinstance(self.result, Exception):
        result_data: dict[str, Any] = {"type": "exception", "message": str(self.result)}
    elif isinstance(self.result, AgentResult):
        result_data = self.result.to_dict()
    else:
        # MultiAgentResult case
        result_data = self.result.to_dict()

    return {
        "result": result_data,
        "execution_time": self.execution_time,
        "status": self.status.value,
        "accumulated_usage": self.accumulated_usage,
        "accumulated_metrics": self.accumulated_metrics,
        "execution_count": self.execution_count,
        "interrupts": [interrupt.to_dict() for interrupt in self.interrupts],
    }

SessionManager

Bases: HookProvider, ABC

Abstract interface for managing sessions.

A session manager is in charge of persisting the conversation and state of an agent across its interaction. Changes made to the agents conversation, state, or other attributes should be persisted immediately after they are changed. The different methods introduced in this class are called at important lifecycle events for an agent, and should be persisted in the session.

Source code in strands/session/session_manager.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class SessionManager(HookProvider, ABC):
    """Abstract interface for managing sessions.

    A session manager is in charge of persisting the conversation and state of an agent across its interaction.
    Changes made to the agents conversation, state, or other attributes should be persisted immediately after
    they are changed. The different methods introduced in this class are called at important lifecycle events
    for an agent, and should be persisted in the session.
    """

    def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None:
        """Register hooks for persisting the agent to the session."""
        # After the normal Agent initialization behavior, call the session initialize function to restore the agent
        registry.add_callback(AgentInitializedEvent, lambda event: self.initialize(event.agent))

        # For each message appended to the Agents messages, store that message in the session
        registry.add_callback(MessageAddedEvent, lambda event: self.append_message(event.message, event.agent))

        # Sync the agent into the session for each message in case the agent state was updated
        registry.add_callback(MessageAddedEvent, lambda event: self.sync_agent(event.agent))

        # After an agent was invoked, sync it with the session to capture any conversation manager state updates
        registry.add_callback(AfterInvocationEvent, lambda event: self.sync_agent(event.agent))

        registry.add_callback(MultiAgentInitializedEvent, lambda event: self.initialize_multi_agent(event.source))
        registry.add_callback(AfterNodeCallEvent, lambda event: self.sync_multi_agent(event.source))
        registry.add_callback(AfterMultiAgentInvocationEvent, lambda event: self.sync_multi_agent(event.source))

        # Register BidiAgent hooks
        registry.add_callback(BidiAgentInitializedEvent, lambda event: self.initialize_bidi_agent(event.agent))
        registry.add_callback(BidiMessageAddedEvent, lambda event: self.append_bidi_message(event.message, event.agent))
        registry.add_callback(BidiMessageAddedEvent, lambda event: self.sync_bidi_agent(event.agent))
        registry.add_callback(BidiAfterInvocationEvent, lambda event: self.sync_bidi_agent(event.agent))

    @abstractmethod
    def redact_latest_message(self, redact_message: Message, agent: "Agent", **kwargs: Any) -> None:
        """Redact the message most recently appended to the agent in the session.

        Args:
            redact_message: New message to use that contains the redact content
            agent: Agent to apply the message redaction to
            **kwargs: Additional keyword arguments for future extensibility.
        """

    @abstractmethod
    def append_message(self, message: Message, agent: "Agent", **kwargs: Any) -> None:
        """Append a message to the agent's session.

        Args:
            message: Message to add to the agent in the session
            agent: Agent to append the message to
            **kwargs: Additional keyword arguments for future extensibility.
        """

    @abstractmethod
    def sync_agent(self, agent: "Agent", **kwargs: Any) -> None:
        """Serialize and sync the agent with the session storage.

        Args:
            agent: Agent who should be synchronized with the session storage
            **kwargs: Additional keyword arguments for future extensibility.
        """

    @abstractmethod
    def initialize(self, agent: "Agent", **kwargs: Any) -> None:
        """Initialize an agent with a session.

        Args:
            agent: Agent to initialize
            **kwargs: Additional keyword arguments for future extensibility.
        """

    def sync_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
        """Serialize and sync multi-agent with the session storage.

        Args:
            source: Multi-agent source object to persist
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support multi-agent persistence "
            "(sync_multi_agent). Provide an implementation or use a "
            "SessionManager with session_type=SessionType.MULTI_AGENT."
        )

    def initialize_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
        """Read multi-agent state from persistent storage.

        Args:
            **kwargs: Additional keyword arguments for future extensibility.
            source: Multi-agent state to initialize.

        Returns:
            Multi-agent state dictionary or empty dict if not found.

        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support multi-agent persistence "
            "(initialize_multi_agent). Provide an implementation or use a "
            "SessionManager with session_type=SessionType.MULTI_AGENT."
        )

    def initialize_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
        """Initialize a bidirectional agent with a session.

        Args:
            agent: BidiAgent to initialize
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support bidirectional agent persistence "
            "(initialize_bidi_agent). Provide an implementation or use a "
            "SessionManager with bidirectional agent support."
        )

    def append_bidi_message(self, message: Message, agent: "BidiAgent", **kwargs: Any) -> None:
        """Append a message to the bidirectional agent's session.

        Args:
            message: Message to add to the agent in the session
            agent: BidiAgent to append the message to
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support bidirectional agent persistence "
            "(append_bidi_message). Provide an implementation or use a "
            "SessionManager with bidirectional agent support."
        )

    def sync_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
        """Serialize and sync the bidirectional agent with the session storage.

        Args:
            agent: BidiAgent who should be synchronized with the session storage
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support bidirectional agent persistence "
            "(sync_bidi_agent). Provide an implementation or use a "
            "SessionManager with bidirectional agent support."
        )

append_bidi_message(message, agent, **kwargs)

Append a message to the bidirectional agent's session.

Parameters:

Name Type Description Default
message Message

Message to add to the agent in the session

required
agent BidiAgent

BidiAgent to append the message to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
143
144
145
146
147
148
149
150
151
152
153
154
155
def append_bidi_message(self, message: Message, agent: "BidiAgent", **kwargs: Any) -> None:
    """Append a message to the bidirectional agent's session.

    Args:
        message: Message to add to the agent in the session
        agent: BidiAgent to append the message to
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support bidirectional agent persistence "
        "(append_bidi_message). Provide an implementation or use a "
        "SessionManager with bidirectional agent support."
    )

append_message(message, agent, **kwargs) abstractmethod

Append a message to the agent's session.

Parameters:

Name Type Description Default
message Message

Message to add to the agent in the session

required
agent Agent

Agent to append the message to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
72
73
74
75
76
77
78
79
80
@abstractmethod
def append_message(self, message: Message, agent: "Agent", **kwargs: Any) -> None:
    """Append a message to the agent's session.

    Args:
        message: Message to add to the agent in the session
        agent: Agent to append the message to
        **kwargs: Additional keyword arguments for future extensibility.
    """

initialize(agent, **kwargs) abstractmethod

Initialize an agent with a session.

Parameters:

Name Type Description Default
agent Agent

Agent to initialize

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
91
92
93
94
95
96
97
98
@abstractmethod
def initialize(self, agent: "Agent", **kwargs: Any) -> None:
    """Initialize an agent with a session.

    Args:
        agent: Agent to initialize
        **kwargs: Additional keyword arguments for future extensibility.
    """

initialize_bidi_agent(agent, **kwargs)

Initialize a bidirectional agent with a session.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent to initialize

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
130
131
132
133
134
135
136
137
138
139
140
141
def initialize_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
    """Initialize a bidirectional agent with a session.

    Args:
        agent: BidiAgent to initialize
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support bidirectional agent persistence "
        "(initialize_bidi_agent). Provide an implementation or use a "
        "SessionManager with bidirectional agent support."
    )

initialize_multi_agent(source, **kwargs)

Read multi-agent state from persistent storage.

Parameters:

Name Type Description Default
**kwargs Any

Additional keyword arguments for future extensibility.

{}
source MultiAgentBase

Multi-agent state to initialize.

required

Returns:

Type Description
None

Multi-agent state dictionary or empty dict if not found.

Source code in strands/session/session_manager.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def initialize_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
    """Read multi-agent state from persistent storage.

    Args:
        **kwargs: Additional keyword arguments for future extensibility.
        source: Multi-agent state to initialize.

    Returns:
        Multi-agent state dictionary or empty dict if not found.

    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support multi-agent persistence "
        "(initialize_multi_agent). Provide an implementation or use a "
        "SessionManager with session_type=SessionType.MULTI_AGENT."
    )

redact_latest_message(redact_message, agent, **kwargs) abstractmethod

Redact the message most recently appended to the agent in the session.

Parameters:

Name Type Description Default
redact_message Message

New message to use that contains the redact content

required
agent Agent

Agent to apply the message redaction to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
62
63
64
65
66
67
68
69
70
@abstractmethod
def redact_latest_message(self, redact_message: Message, agent: "Agent", **kwargs: Any) -> None:
    """Redact the message most recently appended to the agent in the session.

    Args:
        redact_message: New message to use that contains the redact content
        agent: Agent to apply the message redaction to
        **kwargs: Additional keyword arguments for future extensibility.
    """

register_hooks(registry, **kwargs)

Register hooks for persisting the agent to the session.

Source code in strands/session/session_manager.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None:
    """Register hooks for persisting the agent to the session."""
    # After the normal Agent initialization behavior, call the session initialize function to restore the agent
    registry.add_callback(AgentInitializedEvent, lambda event: self.initialize(event.agent))

    # For each message appended to the Agents messages, store that message in the session
    registry.add_callback(MessageAddedEvent, lambda event: self.append_message(event.message, event.agent))

    # Sync the agent into the session for each message in case the agent state was updated
    registry.add_callback(MessageAddedEvent, lambda event: self.sync_agent(event.agent))

    # After an agent was invoked, sync it with the session to capture any conversation manager state updates
    registry.add_callback(AfterInvocationEvent, lambda event: self.sync_agent(event.agent))

    registry.add_callback(MultiAgentInitializedEvent, lambda event: self.initialize_multi_agent(event.source))
    registry.add_callback(AfterNodeCallEvent, lambda event: self.sync_multi_agent(event.source))
    registry.add_callback(AfterMultiAgentInvocationEvent, lambda event: self.sync_multi_agent(event.source))

    # Register BidiAgent hooks
    registry.add_callback(BidiAgentInitializedEvent, lambda event: self.initialize_bidi_agent(event.agent))
    registry.add_callback(BidiMessageAddedEvent, lambda event: self.append_bidi_message(event.message, event.agent))
    registry.add_callback(BidiMessageAddedEvent, lambda event: self.sync_bidi_agent(event.agent))
    registry.add_callback(BidiAfterInvocationEvent, lambda event: self.sync_bidi_agent(event.agent))

sync_agent(agent, **kwargs) abstractmethod

Serialize and sync the agent with the session storage.

Parameters:

Name Type Description Default
agent Agent

Agent who should be synchronized with the session storage

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
82
83
84
85
86
87
88
89
@abstractmethod
def sync_agent(self, agent: "Agent", **kwargs: Any) -> None:
    """Serialize and sync the agent with the session storage.

    Args:
        agent: Agent who should be synchronized with the session storage
        **kwargs: Additional keyword arguments for future extensibility.
    """

sync_bidi_agent(agent, **kwargs)

Serialize and sync the bidirectional agent with the session storage.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent who should be synchronized with the session storage

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
157
158
159
160
161
162
163
164
165
166
167
168
def sync_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
    """Serialize and sync the bidirectional agent with the session storage.

    Args:
        agent: BidiAgent who should be synchronized with the session storage
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support bidirectional agent persistence "
        "(sync_bidi_agent). Provide an implementation or use a "
        "SessionManager with bidirectional agent support."
    )

sync_multi_agent(source, **kwargs)

Serialize and sync multi-agent with the session storage.

Parameters:

Name Type Description Default
source MultiAgentBase

Multi-agent source object to persist

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
100
101
102
103
104
105
106
107
108
109
110
111
def sync_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
    """Serialize and sync multi-agent with the session storage.

    Args:
        source: Multi-agent source object to persist
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support multi-agent persistence "
        "(sync_multi_agent). Provide an implementation or use a "
        "SessionManager with session_type=SessionType.MULTI_AGENT."
    )

SharedContext dataclass

Shared context between swarm nodes.

Source code in strands/multiagent/swarm.py
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
@dataclass
class SharedContext:
    """Shared context between swarm nodes."""

    context: dict[str, dict[str, Any]] = field(default_factory=dict)

    def add_context(self, node: SwarmNode, key: str, value: Any) -> None:
        """Add context."""
        self._validate_key(key)
        self._validate_json_serializable(value)

        if node.node_id not in self.context:
            self.context[node.node_id] = {}
        self.context[node.node_id][key] = value

    def _validate_key(self, key: str) -> None:
        """Validate that a key is valid.

        Args:
            key: The key to validate

        Raises:
            ValueError: If key is invalid
        """
        if key is None:
            raise ValueError("Key cannot be None")
        if not isinstance(key, str):
            raise ValueError("Key must be a string")
        if not key.strip():
            raise ValueError("Key cannot be empty")

    def _validate_json_serializable(self, value: Any) -> None:
        """Validate that a value is JSON serializable.

        Args:
            value: The value to validate

        Raises:
            ValueError: If value is not JSON serializable
        """
        try:
            json.dumps(value)
        except (TypeError, ValueError) as e:
            raise ValueError(
                f"Value is not JSON serializable: {type(value).__name__}. "
                f"Only JSON-compatible types (str, int, float, bool, list, dict, None) are allowed."
            ) from e

add_context(node, key, value)

Add context.

Source code in strands/multiagent/swarm.py
117
118
119
120
121
122
123
124
def add_context(self, node: SwarmNode, key: str, value: Any) -> None:
    """Add context."""
    self._validate_key(key)
    self._validate_json_serializable(value)

    if node.node_id not in self.context:
        self.context[node.node_id] = {}
    self.context[node.node_id][key] = value

Status

Bases: Enum

Execution status for both graphs and nodes.

Attributes:

Name Type Description
PENDING

Task has not started execution yet.

EXECUTING

Task is currently running.

COMPLETED

Task finished successfully.

FAILED

Task encountered an error and could not complete.

INTERRUPTED

Task was interrupted by user.

Source code in strands/multiagent/base.py
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
class Status(Enum):
    """Execution status for both graphs and nodes.

    Attributes:
        PENDING: Task has not started execution yet.
        EXECUTING: Task is currently running.
        COMPLETED: Task finished successfully.
        FAILED: Task encountered an error and could not complete.
        INTERRUPTED: Task was interrupted by user.
    """

    PENDING = "pending"
    EXECUTING = "executing"
    COMPLETED = "completed"
    FAILED = "failed"
    INTERRUPTED = "interrupted"

Swarm

Bases: MultiAgentBase

Self-organizing collaborative agent teams with shared working memory.

Source code in strands/multiagent/swarm.py
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
class Swarm(MultiAgentBase):
    """Self-organizing collaborative agent teams with shared working memory."""

    def __init__(
        self,
        nodes: list[Agent],
        *,
        entry_point: Agent | None = None,
        max_handoffs: int = 20,
        max_iterations: int = 20,
        execution_timeout: float = 900.0,
        node_timeout: float = 300.0,
        repetitive_handoff_detection_window: int = 0,
        repetitive_handoff_min_unique_agents: int = 0,
        session_manager: Optional[SessionManager] = None,
        hooks: Optional[list[HookProvider]] = None,
        id: str = _DEFAULT_SWARM_ID,
        trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
    ) -> None:
        """Initialize Swarm with agents and configuration.

        Args:
            id: Unique swarm id (default: "default_swarm")
            nodes: List of nodes (e.g. Agent) to include in the swarm
            entry_point: Agent to start with. If None, uses the first agent (default: None)
            max_handoffs: Maximum handoffs to agents and users (default: 20)
            max_iterations: Maximum node executions within the swarm (default: 20)
            execution_timeout: Total execution timeout in seconds (default: 900.0)
            node_timeout: Individual node timeout in seconds (default: 300.0)
            repetitive_handoff_detection_window: Number of recent nodes to check for repetitive handoffs
                Disabled by default (default: 0)
            repetitive_handoff_min_unique_agents: Minimum unique agents required in recent sequence
                Disabled by default (default: 0)
            session_manager: Session manager for persisting graph state and execution history (default: None)
            hooks: List of hook providers for monitoring and extending graph execution behavior (default: None)
            trace_attributes: Custom trace attributes to apply to the agent's trace span (default: None)
        """
        super().__init__()
        self.id = id
        self.entry_point = entry_point
        self.max_handoffs = max_handoffs
        self.max_iterations = max_iterations
        self.execution_timeout = execution_timeout
        self.node_timeout = node_timeout
        self.repetitive_handoff_detection_window = repetitive_handoff_detection_window
        self.repetitive_handoff_min_unique_agents = repetitive_handoff_min_unique_agents

        self.shared_context = SharedContext()
        self.nodes: dict[str, SwarmNode] = {}

        self.state = SwarmState(
            current_node=None,  # Placeholder, will be set properly
            task="",
            completion_status=Status.PENDING,
        )
        self._interrupt_state = _InterruptState()

        self.tracer = get_tracer()
        self.trace_attributes: dict[str, AttributeValue] = self._parse_trace_attributes(trace_attributes)

        self.session_manager = session_manager
        self.hooks = HookRegistry()
        if hooks:
            for hook in hooks:
                self.hooks.add_hook(hook)
        if self.session_manager:
            self.hooks.add_hook(self.session_manager)

        self._resume_from_session = False

        self._setup_swarm(nodes)
        self._inject_swarm_tools()
        run_async(lambda: self.hooks.invoke_callbacks_async(MultiAgentInitializedEvent(self)))

    def __call__(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> SwarmResult:
        """Invoke the swarm synchronously.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Keyword arguments allowing backward compatible future changes.
        """
        if invocation_state is None:
            invocation_state = {}
        return run_async(lambda: self.invoke_async(task, invocation_state))

    async def invoke_async(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> SwarmResult:
        """Invoke the swarm asynchronously.

        This method uses stream_async internally and consumes all events until completion,
        following the same pattern as the Agent class.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Keyword arguments allowing backward compatible future changes.
        """
        events = self.stream_async(task, invocation_state, **kwargs)
        final_event = None
        async for event in events:
            final_event = event

        if final_event is None or "result" not in final_event:
            raise ValueError("Swarm streaming completed without producing a result event")

        return cast(SwarmResult, final_event["result"])

    async def stream_async(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> AsyncIterator[dict[str, Any]]:
        """Stream events during swarm execution.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Keyword arguments allowing backward compatible future changes.

        Yields:
            Dictionary events during swarm execution, such as:
            - multi_agent_node_start: When a node begins execution
            - multi_agent_node_stream: Forwarded agent events with node context
            - multi_agent_handoff: When control is handed off between agents
            - multi_agent_node_stop: When a node stops execution
            - result: Final swarm result
        """
        self._interrupt_state.resume(task)

        if invocation_state is None:
            invocation_state = {}

        await self.hooks.invoke_callbacks_async(BeforeMultiAgentInvocationEvent(self, invocation_state))

        logger.debug("starting swarm execution")

        if self._resume_from_session or self._interrupt_state.activated:
            self.state.completion_status = Status.EXECUTING
            self.state.start_time = time.time()
        else:
            # Initialize swarm state with configuration
            initial_node = self._initial_node()

            self.state = SwarmState(
                current_node=initial_node,
                task=task,
                completion_status=Status.EXECUTING,
                shared_context=self.shared_context,
            )

        span = self.tracer.start_multiagent_span(task, "swarm", custom_trace_attributes=self.trace_attributes)
        with trace_api.use_span(span, end_on_exit=True):
            interrupts = []

            try:
                current_node = cast(SwarmNode, self.state.current_node)
                logger.debug("current_node=<%s> | starting swarm execution with node", current_node.node_id)
                logger.debug(
                    "max_handoffs=<%d>, max_iterations=<%d>, timeout=<%s>s | swarm execution config",
                    self.max_handoffs,
                    self.max_iterations,
                    self.execution_timeout,
                )

                async for event in self._execute_swarm(invocation_state):
                    if isinstance(event, MultiAgentNodeInterruptEvent):
                        interrupts = event.interrupts

                    yield event.as_dict()

            except Exception:
                logger.exception("swarm execution failed")
                self.state.completion_status = Status.FAILED
                raise
            finally:
                self.state.execution_time = round((time.time() - self.state.start_time) * 1000)
                await self.hooks.invoke_callbacks_async(AfterMultiAgentInvocationEvent(self, invocation_state))
                self._resume_from_session = False

            # Yield final result after execution_time is set
            result = self._build_result(interrupts)
            yield MultiAgentResultEvent(result=result).as_dict()

    async def _stream_with_timeout(
        self, async_generator: AsyncIterator[Any], timeout: float | None, timeout_message: str
    ) -> AsyncIterator[Any]:
        """Wrap an async generator with timeout for total execution time.

        Tracks elapsed time from start and enforces timeout across all events.
        Each event wait uses remaining time from the total timeout budget.

        Args:
            async_generator: The generator to wrap
            timeout: Total timeout in seconds for entire stream, or None for no timeout
            timeout_message: Message to include in timeout exception

        Yields:
            Events from the wrapped generator as they arrive

        Raises:
            Exception: If total execution time exceeds timeout
        """
        if timeout is None:
            # No timeout - just pass through
            async for event in async_generator:
                yield event
        else:
            # Track start time for total timeout
            start_time = asyncio.get_event_loop().time()

            while True:
                # Calculate remaining time from total timeout budget
                elapsed = asyncio.get_event_loop().time() - start_time
                remaining = timeout - elapsed

                if remaining <= 0:
                    raise Exception(timeout_message)

                try:
                    event = await asyncio.wait_for(async_generator.__anext__(), timeout=remaining)
                    yield event
                except StopAsyncIteration:
                    break
                except asyncio.TimeoutError as err:
                    raise Exception(timeout_message) from err

    def _setup_swarm(self, nodes: list[Agent]) -> None:
        """Initialize swarm configuration."""
        # Validate nodes before setup
        self._validate_swarm(nodes)

        # Validate agents have names and create SwarmNode objects
        for i, node in enumerate(nodes):
            if not node.name:
                node_id = f"node_{i}"
                node.name = node_id
                logger.debug("node_id=<%s> | agent has no name, dynamically generating one", node_id)

            node_id = str(node.name)

            # Ensure node IDs are unique
            if node_id in self.nodes:
                raise ValueError(f"Node ID '{node_id}' is not unique. Each agent must have a unique name.")

            self.nodes[node_id] = SwarmNode(node_id, node, swarm=self)

        # Validate entry point if specified
        if self.entry_point is not None:
            entry_point_node_id = str(self.entry_point.name)
            if (
                entry_point_node_id not in self.nodes
                or self.nodes[entry_point_node_id].executor is not self.entry_point
            ):
                available_agents = [
                    f"{node_id} ({type(node.executor).__name__})" for node_id, node in self.nodes.items()
                ]
                raise ValueError(f"Entry point agent not found in swarm nodes. Available agents: {available_agents}")

        swarm_nodes = list(self.nodes.values())
        logger.debug("nodes=<%s> | initialized swarm with nodes", [node.node_id for node in swarm_nodes])

        if self.entry_point:
            entry_point_name = getattr(self.entry_point, "name", "unnamed_agent")
            logger.debug("entry_point=<%s> | configured entry point", entry_point_name)
        else:
            first_node = next(iter(self.nodes.keys()))
            logger.debug("entry_point=<%s> | using first node as entry point", first_node)

    def _validate_swarm(self, nodes: list[Agent]) -> None:
        """Validate swarm structure and nodes."""
        # Check for duplicate object instances
        seen_instances = set()
        for node in nodes:
            if id(node) in seen_instances:
                raise ValueError("Duplicate node instance detected. Each node must have a unique object instance.")
            seen_instances.add(id(node))

            # Check for session persistence
            if node._session_manager is not None:
                raise ValueError("Session persistence is not supported for Swarm agents yet.")

    def _inject_swarm_tools(self) -> None:
        """Add swarm coordination tools to each agent."""
        # Create tool functions with proper closures
        swarm_tools = [
            self._create_handoff_tool(),
        ]

        for node in self.nodes.values():
            # Check for existing tools with conflicting names
            existing_tools = node.executor.tool_registry.registry
            conflicting_tools = []

            if "handoff_to_agent" in existing_tools:
                conflicting_tools.append("handoff_to_agent")

            if conflicting_tools:
                raise ValueError(
                    f"Agent '{node.node_id}' already has tools with names that conflict with swarm coordination tools: "
                    f"{', '.join(conflicting_tools)}. Please rename these tools to avoid conflicts."
                )

            # Use the agent's tool registry to process and register the tools
            node.executor.tool_registry.process_tools(swarm_tools)

        logger.debug(
            "tool_count=<%d>, node_count=<%d> | injected coordination tools into agents",
            len(swarm_tools),
            len(self.nodes),
        )

    def _create_handoff_tool(self) -> Callable[..., Any]:
        """Create handoff tool for agent coordination."""
        swarm_ref = self  # Capture swarm reference

        @tool
        def handoff_to_agent(agent_name: str, message: str, context: dict[str, Any] | None = None) -> dict[str, Any]:
            """Transfer control to another agent in the swarm for specialized help.

            Args:
                agent_name: Name of the agent to hand off to
                message: Message explaining what needs to be done and why you're handing off
                context: Additional context to share with the next agent

            Returns:
                Confirmation of handoff initiation
            """
            try:
                context = context or {}

                # Validate target agent exists
                target_node = swarm_ref.nodes.get(agent_name)
                if not target_node:
                    return {"status": "error", "content": [{"text": f"Error: Agent '{agent_name}' not found in swarm"}]}

                # Execute handoff
                swarm_ref._handle_handoff(target_node, message, context)

                return {"status": "success", "content": [{"text": f"Handing off to {agent_name}: {message}"}]}
            except Exception as e:
                return {"status": "error", "content": [{"text": f"Error in handoff: {str(e)}"}]}

        return handoff_to_agent

    def _handle_handoff(self, target_node: SwarmNode, message: str, context: dict[str, Any]) -> None:
        """Handle handoff to another agent."""
        # If task is already completed, don't allow further handoffs
        if self.state.completion_status != Status.EXECUTING:
            logger.debug(
                "task_status=<%s> | ignoring handoff request - task already completed",
                self.state.completion_status,
            )
            return

        current_node = cast(SwarmNode, self.state.current_node)

        self.state.handoff_node = target_node
        self.state.handoff_message = message

        # Store handoff context as shared context
        if context:
            for key, value in context.items():
                self.shared_context.add_context(current_node, key, value)

        logger.debug(
            "from_node=<%s>, to_node=<%s> | handing off from agent to agent",
            current_node.node_id,
            target_node.node_id,
        )

    def _build_node_input(self, target_node: SwarmNode) -> str:
        """Build input text for a node based on shared context and handoffs.

        Example formatted output:
        ```
        Handoff Message: The user needs help with Python debugging - I've identified the issue but need someone with more expertise to fix it.

        User Request: My Python script is throwing a KeyError when processing JSON data from an API

        Previous agents who worked on this: data_analyst → code_reviewer

        Shared knowledge from previous agents:
        • data_analyst: {"issue_location": "line 42", "error_type": "missing key validation", "suggested_fix": "add key existence check"}
        • code_reviewer: {"code_quality": "good overall structure", "security_notes": "API key should be in environment variable"}

        Other agents available for collaboration:
        Agent name: data_analyst. Agent description: Analyzes data and provides deeper insights
        Agent name: code_reviewer.
        Agent name: security_specialist. Agent description: Focuses on secure coding practices and vulnerability assessment

        You have access to swarm coordination tools if you need help from other agents. If you don't hand off to another agent, the swarm will consider the task complete.
        ```
        """  # noqa: E501
        context_info: dict[str, Any] = {
            "task": self.state.task,
            "node_history": [node.node_id for node in self.state.node_history],
            "shared_context": {k: v for k, v in self.shared_context.context.items()},
        }
        context_text = ""

        # Include handoff message prominently at the top if present
        if self.state.handoff_message:
            context_text += f"Handoff Message: {self.state.handoff_message}\n\n"

        # Include task information if available
        if "task" in context_info:
            task = context_info.get("task")
            if isinstance(task, str):
                context_text += f"User Request: {task}\n\n"
            elif isinstance(task, list):
                context_text += "User Request: Multi-modal task\n\n"

        # Include detailed node history
        if context_info.get("node_history"):
            context_text += f"Previous agents who worked on this: {' → '.join(context_info['node_history'])}\n\n"

        # Include actual shared context, not just a mention
        shared_context = context_info.get("shared_context", {})
        if shared_context:
            context_text += "Shared knowledge from previous agents:\n"
            for node_name, context in shared_context.items():
                if context:  # Only include if node has contributed context
                    context_text += f"• {node_name}: {context}\n"
            context_text += "\n"

        # Include available nodes with descriptions if available
        other_nodes = [node_id for node_id in self.nodes.keys() if node_id != target_node.node_id]
        if other_nodes:
            context_text += "Other agents available for collaboration:\n"
            for node_id in other_nodes:
                node = self.nodes.get(node_id)
                context_text += f"Agent name: {node_id}."
                if node and hasattr(node.executor, "description") and node.executor.description:
                    context_text += f" Agent description: {node.executor.description}"
                context_text += "\n"
            context_text += "\n"

        context_text += (
            "You have access to swarm coordination tools if you need help from other agents. "
            "If you don't hand off to another agent, the swarm will consider the task complete."
        )

        return context_text

    def _activate_interrupt(self, node: SwarmNode, interrupts: list[Interrupt]) -> MultiAgentNodeInterruptEvent:
        """Activate the interrupt state.

        Note, a Swarm may be interrupted either from a BeforeNodeCallEvent hook or from within an agent node. In either
        case, we must manage the interrupt state of both the Swarm and the individual agent nodes.

        Args:
            node: The interrupted node.
            interrupts: The interrupts raised by the user.

        Returns:
            MultiAgentNodeInterruptEvent
        """
        logger.debug("node=<%s> | node interrupted", node.node_id)
        self.state.completion_status = Status.INTERRUPTED

        self._interrupt_state.context[node.node_id] = {
            "activated": node.executor._interrupt_state.activated,
            "interrupt_state": node.executor._interrupt_state.to_dict(),
            "state": node.executor.state.get(),
            "messages": node.executor.messages,
        }

        self._interrupt_state.interrupts.update({interrupt.id: interrupt for interrupt in interrupts})
        self._interrupt_state.activate()

        return MultiAgentNodeInterruptEvent(node.node_id, interrupts)

    async def _execute_swarm(self, invocation_state: dict[str, Any]) -> AsyncIterator[Any]:
        """Execute swarm and yield TypedEvent objects."""
        try:
            # Main execution loop
            while True:
                if self.state.completion_status != Status.EXECUTING:
                    reason = f"Completion status is: {self.state.completion_status}"
                    logger.debug("reason=<%s> | stopping streaming execution", reason)
                    break

                should_continue, reason = self.state.should_continue(
                    max_handoffs=self.max_handoffs,
                    max_iterations=self.max_iterations,
                    execution_timeout=self.execution_timeout,
                    repetitive_handoff_detection_window=self.repetitive_handoff_detection_window,
                    repetitive_handoff_min_unique_agents=self.repetitive_handoff_min_unique_agents,
                )
                if not should_continue:
                    self.state.completion_status = Status.FAILED
                    logger.debug("reason=<%s> | stopping execution", reason)
                    break

                current_node = self.state.current_node
                if not current_node or current_node.node_id not in self.nodes:
                    logger.error("node=<%s> | node not found", current_node.node_id if current_node else "None")
                    self.state.completion_status = Status.FAILED
                    break

                logger.debug(
                    "current_node=<%s>, iteration=<%d> | executing node",
                    current_node.node_id,
                    len(self.state.node_history) + 1,
                )

                before_event, interrupts = await self.hooks.invoke_callbacks_async(
                    BeforeNodeCallEvent(self, current_node.node_id, invocation_state)
                )

                # TODO: Implement cancellation token to stop _execute_node from continuing
                try:
                    if interrupts:
                        yield self._activate_interrupt(current_node, interrupts)
                        break

                    if before_event.cancel_node:
                        cancel_message = (
                            before_event.cancel_node
                            if isinstance(before_event.cancel_node, str)
                            else "node cancelled by user"
                        )
                        logger.debug("reason=<%s> | cancelling execution", cancel_message)
                        yield MultiAgentNodeCancelEvent(current_node.node_id, cancel_message)
                        self.state.completion_status = Status.FAILED
                        break

                    node_stream = self._stream_with_timeout(
                        self._execute_node(current_node, self.state.task, invocation_state),
                        self.node_timeout,
                        f"Node '{current_node.node_id}' execution timed out after {self.node_timeout}s",
                    )
                    async for event in node_stream:
                        yield event

                    stop_event = cast(MultiAgentNodeStopEvent, event)
                    node_result = stop_event["node_result"]
                    if node_result.status == Status.INTERRUPTED:
                        yield self._activate_interrupt(current_node, node_result.interrupts)
                        break

                    self._interrupt_state.deactivate()

                    self.state.node_history.append(current_node)

                except Exception:
                    logger.exception("node=<%s> | node execution failed", current_node.node_id)
                    self.state.completion_status = Status.FAILED
                    break

                finally:
                    await self.hooks.invoke_callbacks_async(
                        AfterNodeCallEvent(self, current_node.node_id, invocation_state)
                    )

                logger.debug("node=<%s> | node execution completed", current_node.node_id)

                # Check if handoff requested during execution
                if self.state.handoff_node:
                    previous_node = current_node
                    current_node = self.state.handoff_node

                    self.state.handoff_node = None
                    self.state.current_node = current_node

                    handoff_event = MultiAgentHandoffEvent(
                        from_node_ids=[previous_node.node_id],
                        to_node_ids=[current_node.node_id],
                        message=self.state.handoff_message or "Agent handoff occurred",
                    )
                    yield handoff_event
                    logger.debug(
                        "from_node=<%s>, to_node=<%s> | handoff detected",
                        previous_node.node_id,
                        current_node.node_id,
                    )

                else:
                    logger.debug("node=<%s> | no handoff occurred, marking swarm as complete", current_node.node_id)
                    self.state.completion_status = Status.COMPLETED
                    break

        except Exception:
            logger.exception("swarm execution failed")
            self.state.completion_status = Status.FAILED
        finally:
            elapsed_time = time.time() - self.state.start_time
            logger.debug("status=<%s> | swarm execution completed", self.state.completion_status)
            logger.debug(
                "node_history_length=<%d>, time=<%s>s | metrics",
                len(self.state.node_history),
                f"{elapsed_time:.2f}",
            )

    async def _execute_node(
        self, node: SwarmNode, task: MultiAgentInput, invocation_state: dict[str, Any]
    ) -> AsyncIterator[Any]:
        """Execute swarm node and yield TypedEvent objects."""
        start_time = time.time()
        node_name = node.node_id

        # Emit node start event
        start_event = MultiAgentNodeStartEvent(node_id=node_name, node_type="agent")
        yield start_event

        try:
            if self._interrupt_state.activated and self._interrupt_state.context[node_name]["activated"]:
                node_input = self._interrupt_state.context["responses"]

            else:
                # Prepare context for node
                context_text = self._build_node_input(node)
                node_input = [ContentBlock(text=f"Context:\n{context_text}\n\n")]

                # Clear handoff message after it's been included in context
                self.state.handoff_message = None

                if not isinstance(task, str):
                    # Include additional ContentBlocks in node input
                    node_input = node_input + cast(list[ContentBlock], task)

            # Execute node with streaming
            node.reset_executor_state()

            # Stream agent events with node context and capture final result
            result = None
            async for event in node.executor.stream_async(node_input, invocation_state=invocation_state):
                # Forward agent events with node context
                wrapped_event = MultiAgentNodeStreamEvent(node_name, event)
                yield wrapped_event
                # Capture the final result event
                if "result" in event:
                    result = event["result"]

            if result is None:
                raise ValueError(f"Node '{node_name}' did not produce a result event")

            execution_time = round((time.time() - start_time) * 1000)
            status = Status.INTERRUPTED if result.stop_reason == "interrupt" else Status.COMPLETED

            # Create NodeResult with extracted metrics
            result_metrics = getattr(result, "metrics", None)
            usage = getattr(result_metrics, "accumulated_usage", Usage(inputTokens=0, outputTokens=0, totalTokens=0))
            metrics = getattr(result_metrics, "accumulated_metrics", Metrics(latencyMs=execution_time))

            node_result = NodeResult(
                result=result,
                execution_time=execution_time,
                status=status,
                accumulated_usage=usage,
                accumulated_metrics=metrics,
                execution_count=1,
                interrupts=result.interrupts or [],
            )

            # Store result in state
            self.state.results[node_name] = node_result

            # Accumulate metrics
            self._accumulate_metrics(node_result)

            # Emit node stop event with full NodeResult
            complete_event = MultiAgentNodeStopEvent(
                node_id=node_name,
                node_result=node_result,
            )
            yield complete_event

        except Exception as e:
            execution_time = round((time.time() - start_time) * 1000)
            logger.exception("node=<%s> | node execution failed", node_name)

            # Create a NodeResult for the failed node
            node_result = NodeResult(
                result=e,
                execution_time=execution_time,
                status=Status.FAILED,
                accumulated_usage=Usage(inputTokens=0, outputTokens=0, totalTokens=0),
                accumulated_metrics=Metrics(latencyMs=execution_time),
                execution_count=1,
            )

            # Store result in state
            self.state.results[node_name] = node_result

            # Emit node stop event even for failures
            complete_event = MultiAgentNodeStopEvent(
                node_id=node_name,
                node_result=node_result,
            )
            yield complete_event

            raise

    def _accumulate_metrics(self, node_result: NodeResult) -> None:
        """Accumulate metrics from a node result."""
        self.state.accumulated_usage["inputTokens"] += node_result.accumulated_usage.get("inputTokens", 0)
        self.state.accumulated_usage["outputTokens"] += node_result.accumulated_usage.get("outputTokens", 0)
        self.state.accumulated_usage["totalTokens"] += node_result.accumulated_usage.get("totalTokens", 0)
        self.state.accumulated_metrics["latencyMs"] += node_result.accumulated_metrics.get("latencyMs", 0)

    def _build_result(self, interrupts: list[Interrupt]) -> SwarmResult:
        """Build swarm result from current state."""
        return SwarmResult(
            status=self.state.completion_status,
            results=self.state.results,
            accumulated_usage=self.state.accumulated_usage,
            accumulated_metrics=self.state.accumulated_metrics,
            execution_count=len(self.state.node_history),
            execution_time=self.state.execution_time,
            node_history=self.state.node_history,
            interrupts=interrupts,
        )

    def serialize_state(self) -> dict[str, Any]:
        """Serialize the current swarm state to a dictionary."""
        status_str = self.state.completion_status.value
        if self.state.completion_status == Status.EXECUTING and self.state.current_node:
            next_nodes = [self.state.current_node.node_id]
        elif self.state.completion_status == Status.INTERRUPTED and self.state.current_node:
            next_nodes = [self.state.current_node.node_id]
        elif self.state.handoff_node:
            next_nodes = [self.state.handoff_node.node_id]
        else:
            next_nodes = []

        return {
            "type": "swarm",
            "id": self.id,
            "status": status_str,
            "node_history": [n.node_id for n in self.state.node_history],
            "node_results": {k: v.to_dict() for k, v in self.state.results.items()},
            "next_nodes_to_execute": next_nodes,
            "current_task": self.state.task,
            "context": {
                "shared_context": getattr(self.state.shared_context, "context", {}) or {},
                "handoff_node": self.state.handoff_node.node_id if self.state.handoff_node else None,
                "handoff_message": self.state.handoff_message,
            },
            "_internal_state": {
                "interrupt_state": self._interrupt_state.to_dict(),
            },
        }

    def deserialize_state(self, payload: dict[str, Any]) -> None:
        """Restore swarm state from a session dict and prepare for execution.

        This method handles two scenarios:
        1. If the persisted status is COMPLETED, FAILED resets all nodes and graph state
           to allow re-execution from the beginning.
        2. Otherwise, restores the persisted state and prepares to resume execution
           from the next ready nodes.

        Args:
            payload: Dictionary containing persisted state data including status,
                    completed nodes, results, and next nodes to execute.
        """
        if "_internal_state" in payload:
            internal_state = payload["_internal_state"]
            self._interrupt_state = _InterruptState.from_dict(internal_state["interrupt_state"])

        self._resume_from_session = "next_nodes_to_execute" in payload
        if self._resume_from_session:
            self._from_dict(payload)
            return

        for node in self.nodes.values():
            node.reset_executor_state()

        self.state = SwarmState(
            current_node=SwarmNode("", Agent(), swarm=self),
            task="",
            completion_status=Status.PENDING,
        )

    def _from_dict(self, payload: dict[str, Any]) -> None:
        self.state.completion_status = Status(payload["status"])
        # Hydrate completed nodes & results
        context = payload["context"] or {}
        self.shared_context.context = context.get("shared_context") or {}
        self.state.handoff_message = context.get("handoff_message")
        self.state.handoff_node = self.nodes[context["handoff_node"]] if context.get("handoff_node") else None

        self.state.node_history = [self.nodes[nid] for nid in (payload.get("node_history") or []) if nid in self.nodes]

        raw_results = payload.get("node_results") or {}
        results: dict[str, NodeResult] = {}
        for node_id, entry in raw_results.items():
            if node_id not in self.nodes:
                continue
            try:
                results[node_id] = NodeResult.from_dict(entry)
            except Exception:
                logger.exception("Failed to hydrate NodeResult for node_id=%s; skipping.", node_id)
                raise
        self.state.results = results
        self.state.task = payload.get("current_task", self.state.task)

        next_node_ids = payload.get("next_nodes_to_execute") or []
        if next_node_ids:
            self.state.current_node = self.nodes[next_node_ids[0]] if next_node_ids[0] else self._initial_node()

    def _initial_node(self) -> SwarmNode:
        if self.entry_point:
            return self.nodes[str(self.entry_point.name)]
        return next(iter(self.nodes.values()))  # First SwarmNode

__call__(task, invocation_state=None, **kwargs)

Invoke the swarm synchronously.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Keyword arguments allowing backward compatible future changes.

{}
Source code in strands/multiagent/swarm.py
302
303
304
305
306
307
308
309
310
311
312
313
314
315
def __call__(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> SwarmResult:
    """Invoke the swarm synchronously.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Keyword arguments allowing backward compatible future changes.
    """
    if invocation_state is None:
        invocation_state = {}
    return run_async(lambda: self.invoke_async(task, invocation_state))

__init__(nodes, *, entry_point=None, max_handoffs=20, max_iterations=20, execution_timeout=900.0, node_timeout=300.0, repetitive_handoff_detection_window=0, repetitive_handoff_min_unique_agents=0, session_manager=None, hooks=None, id=_DEFAULT_SWARM_ID, trace_attributes=None)

Initialize Swarm with agents and configuration.

Parameters:

Name Type Description Default
id str

Unique swarm id (default: "default_swarm")

_DEFAULT_SWARM_ID
nodes list[Agent]

List of nodes (e.g. Agent) to include in the swarm

required
entry_point Agent | None

Agent to start with. If None, uses the first agent (default: None)

None
max_handoffs int

Maximum handoffs to agents and users (default: 20)

20
max_iterations int

Maximum node executions within the swarm (default: 20)

20
execution_timeout float

Total execution timeout in seconds (default: 900.0)

900.0
node_timeout float

Individual node timeout in seconds (default: 300.0)

300.0
repetitive_handoff_detection_window int

Number of recent nodes to check for repetitive handoffs Disabled by default (default: 0)

0
repetitive_handoff_min_unique_agents int

Minimum unique agents required in recent sequence Disabled by default (default: 0)

0
session_manager Optional[SessionManager]

Session manager for persisting graph state and execution history (default: None)

None
hooks Optional[list[HookProvider]]

List of hook providers for monitoring and extending graph execution behavior (default: None)

None
trace_attributes Optional[Mapping[str, AttributeValue]]

Custom trace attributes to apply to the agent's trace span (default: None)

None
Source code in strands/multiagent/swarm.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
def __init__(
    self,
    nodes: list[Agent],
    *,
    entry_point: Agent | None = None,
    max_handoffs: int = 20,
    max_iterations: int = 20,
    execution_timeout: float = 900.0,
    node_timeout: float = 300.0,
    repetitive_handoff_detection_window: int = 0,
    repetitive_handoff_min_unique_agents: int = 0,
    session_manager: Optional[SessionManager] = None,
    hooks: Optional[list[HookProvider]] = None,
    id: str = _DEFAULT_SWARM_ID,
    trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
) -> None:
    """Initialize Swarm with agents and configuration.

    Args:
        id: Unique swarm id (default: "default_swarm")
        nodes: List of nodes (e.g. Agent) to include in the swarm
        entry_point: Agent to start with. If None, uses the first agent (default: None)
        max_handoffs: Maximum handoffs to agents and users (default: 20)
        max_iterations: Maximum node executions within the swarm (default: 20)
        execution_timeout: Total execution timeout in seconds (default: 900.0)
        node_timeout: Individual node timeout in seconds (default: 300.0)
        repetitive_handoff_detection_window: Number of recent nodes to check for repetitive handoffs
            Disabled by default (default: 0)
        repetitive_handoff_min_unique_agents: Minimum unique agents required in recent sequence
            Disabled by default (default: 0)
        session_manager: Session manager for persisting graph state and execution history (default: None)
        hooks: List of hook providers for monitoring and extending graph execution behavior (default: None)
        trace_attributes: Custom trace attributes to apply to the agent's trace span (default: None)
    """
    super().__init__()
    self.id = id
    self.entry_point = entry_point
    self.max_handoffs = max_handoffs
    self.max_iterations = max_iterations
    self.execution_timeout = execution_timeout
    self.node_timeout = node_timeout
    self.repetitive_handoff_detection_window = repetitive_handoff_detection_window
    self.repetitive_handoff_min_unique_agents = repetitive_handoff_min_unique_agents

    self.shared_context = SharedContext()
    self.nodes: dict[str, SwarmNode] = {}

    self.state = SwarmState(
        current_node=None,  # Placeholder, will be set properly
        task="",
        completion_status=Status.PENDING,
    )
    self._interrupt_state = _InterruptState()

    self.tracer = get_tracer()
    self.trace_attributes: dict[str, AttributeValue] = self._parse_trace_attributes(trace_attributes)

    self.session_manager = session_manager
    self.hooks = HookRegistry()
    if hooks:
        for hook in hooks:
            self.hooks.add_hook(hook)
    if self.session_manager:
        self.hooks.add_hook(self.session_manager)

    self._resume_from_session = False

    self._setup_swarm(nodes)
    self._inject_swarm_tools()
    run_async(lambda: self.hooks.invoke_callbacks_async(MultiAgentInitializedEvent(self)))

deserialize_state(payload)

Restore swarm state from a session dict and prepare for execution.

This method handles two scenarios: 1. If the persisted status is COMPLETED, FAILED resets all nodes and graph state to allow re-execution from the beginning. 2. Otherwise, restores the persisted state and prepares to resume execution from the next ready nodes.

Parameters:

Name Type Description Default
payload dict[str, Any]

Dictionary containing persisted state data including status, completed nodes, results, and next nodes to execute.

required
Source code in strands/multiagent/swarm.py
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
def deserialize_state(self, payload: dict[str, Any]) -> None:
    """Restore swarm state from a session dict and prepare for execution.

    This method handles two scenarios:
    1. If the persisted status is COMPLETED, FAILED resets all nodes and graph state
       to allow re-execution from the beginning.
    2. Otherwise, restores the persisted state and prepares to resume execution
       from the next ready nodes.

    Args:
        payload: Dictionary containing persisted state data including status,
                completed nodes, results, and next nodes to execute.
    """
    if "_internal_state" in payload:
        internal_state = payload["_internal_state"]
        self._interrupt_state = _InterruptState.from_dict(internal_state["interrupt_state"])

    self._resume_from_session = "next_nodes_to_execute" in payload
    if self._resume_from_session:
        self._from_dict(payload)
        return

    for node in self.nodes.values():
        node.reset_executor_state()

    self.state = SwarmState(
        current_node=SwarmNode("", Agent(), swarm=self),
        task="",
        completion_status=Status.PENDING,
    )

invoke_async(task, invocation_state=None, **kwargs) async

Invoke the swarm asynchronously.

This method uses stream_async internally and consumes all events until completion, following the same pattern as the Agent class.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Keyword arguments allowing backward compatible future changes.

{}
Source code in strands/multiagent/swarm.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
async def invoke_async(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> SwarmResult:
    """Invoke the swarm asynchronously.

    This method uses stream_async internally and consumes all events until completion,
    following the same pattern as the Agent class.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Keyword arguments allowing backward compatible future changes.
    """
    events = self.stream_async(task, invocation_state, **kwargs)
    final_event = None
    async for event in events:
        final_event = event

    if final_event is None or "result" not in final_event:
        raise ValueError("Swarm streaming completed without producing a result event")

    return cast(SwarmResult, final_event["result"])

serialize_state()

Serialize the current swarm state to a dictionary.

Source code in strands/multiagent/swarm.py
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
def serialize_state(self) -> dict[str, Any]:
    """Serialize the current swarm state to a dictionary."""
    status_str = self.state.completion_status.value
    if self.state.completion_status == Status.EXECUTING and self.state.current_node:
        next_nodes = [self.state.current_node.node_id]
    elif self.state.completion_status == Status.INTERRUPTED and self.state.current_node:
        next_nodes = [self.state.current_node.node_id]
    elif self.state.handoff_node:
        next_nodes = [self.state.handoff_node.node_id]
    else:
        next_nodes = []

    return {
        "type": "swarm",
        "id": self.id,
        "status": status_str,
        "node_history": [n.node_id for n in self.state.node_history],
        "node_results": {k: v.to_dict() for k, v in self.state.results.items()},
        "next_nodes_to_execute": next_nodes,
        "current_task": self.state.task,
        "context": {
            "shared_context": getattr(self.state.shared_context, "context", {}) or {},
            "handoff_node": self.state.handoff_node.node_id if self.state.handoff_node else None,
            "handoff_message": self.state.handoff_message,
        },
        "_internal_state": {
            "interrupt_state": self._interrupt_state.to_dict(),
        },
    }

stream_async(task, invocation_state=None, **kwargs) async

Stream events during swarm execution.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Keyword arguments allowing backward compatible future changes.

{}

Yields:

Type Description
AsyncIterator[dict[str, Any]]

Dictionary events during swarm execution, such as:

AsyncIterator[dict[str, Any]]
  • multi_agent_node_start: When a node begins execution
AsyncIterator[dict[str, Any]]
  • multi_agent_node_stream: Forwarded agent events with node context
AsyncIterator[dict[str, Any]]
  • multi_agent_handoff: When control is handed off between agents
AsyncIterator[dict[str, Any]]
  • multi_agent_node_stop: When a node stops execution
AsyncIterator[dict[str, Any]]
  • result: Final swarm result
Source code in strands/multiagent/swarm.py
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
async def stream_async(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> AsyncIterator[dict[str, Any]]:
    """Stream events during swarm execution.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Keyword arguments allowing backward compatible future changes.

    Yields:
        Dictionary events during swarm execution, such as:
        - multi_agent_node_start: When a node begins execution
        - multi_agent_node_stream: Forwarded agent events with node context
        - multi_agent_handoff: When control is handed off between agents
        - multi_agent_node_stop: When a node stops execution
        - result: Final swarm result
    """
    self._interrupt_state.resume(task)

    if invocation_state is None:
        invocation_state = {}

    await self.hooks.invoke_callbacks_async(BeforeMultiAgentInvocationEvent(self, invocation_state))

    logger.debug("starting swarm execution")

    if self._resume_from_session or self._interrupt_state.activated:
        self.state.completion_status = Status.EXECUTING
        self.state.start_time = time.time()
    else:
        # Initialize swarm state with configuration
        initial_node = self._initial_node()

        self.state = SwarmState(
            current_node=initial_node,
            task=task,
            completion_status=Status.EXECUTING,
            shared_context=self.shared_context,
        )

    span = self.tracer.start_multiagent_span(task, "swarm", custom_trace_attributes=self.trace_attributes)
    with trace_api.use_span(span, end_on_exit=True):
        interrupts = []

        try:
            current_node = cast(SwarmNode, self.state.current_node)
            logger.debug("current_node=<%s> | starting swarm execution with node", current_node.node_id)
            logger.debug(
                "max_handoffs=<%d>, max_iterations=<%d>, timeout=<%s>s | swarm execution config",
                self.max_handoffs,
                self.max_iterations,
                self.execution_timeout,
            )

            async for event in self._execute_swarm(invocation_state):
                if isinstance(event, MultiAgentNodeInterruptEvent):
                    interrupts = event.interrupts

                yield event.as_dict()

        except Exception:
            logger.exception("swarm execution failed")
            self.state.completion_status = Status.FAILED
            raise
        finally:
            self.state.execution_time = round((time.time() - self.state.start_time) * 1000)
            await self.hooks.invoke_callbacks_async(AfterMultiAgentInvocationEvent(self, invocation_state))
            self._resume_from_session = False

        # Yield final result after execution_time is set
        result = self._build_result(interrupts)
        yield MultiAgentResultEvent(result=result).as_dict()

SwarmNode dataclass

Represents a node (e.g. Agent) in the swarm.

Source code in strands/multiagent/swarm.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
@dataclass
class SwarmNode:
    """Represents a node (e.g. Agent) in the swarm."""

    node_id: str
    executor: Agent
    swarm: Optional["Swarm"] = None
    _initial_messages: Messages = field(default_factory=list, init=False)
    _initial_state: AgentState = field(default_factory=AgentState, init=False)

    def __post_init__(self) -> None:
        """Capture initial executor state after initialization."""
        # Deep copy the initial messages and state to preserve them
        self._initial_messages = copy.deepcopy(self.executor.messages)
        self._initial_state = AgentState(self.executor.state.get())

    def __hash__(self) -> int:
        """Return hash for SwarmNode based on node_id."""
        return hash(self.node_id)

    def __eq__(self, other: Any) -> bool:
        """Return equality for SwarmNode based on node_id."""
        if not isinstance(other, SwarmNode):
            return False
        return self.node_id == other.node_id

    def __str__(self) -> str:
        """Return string representation of SwarmNode."""
        return self.node_id

    def __repr__(self) -> str:
        """Return detailed representation of SwarmNode."""
        return f"SwarmNode(node_id='{self.node_id}')"

    def reset_executor_state(self) -> None:
        """Reset SwarmNode executor state to initial state when swarm was created.

        If Swarm is resuming from an interrupt, we reset the executor state from the interrupt context.
        """
        if self.swarm and self.swarm._interrupt_state.activated:
            context = self.swarm._interrupt_state.context[self.node_id]
            self.executor.messages = context["messages"]
            self.executor.state = AgentState(context["state"])
            self.executor._interrupt_state = _InterruptState.from_dict(context["interrupt_state"])
            return

        self.executor.messages = copy.deepcopy(self._initial_messages)
        self.executor.state = AgentState(self._initial_state.get())

__eq__(other)

Return equality for SwarmNode based on node_id.

Source code in strands/multiagent/swarm.py
81
82
83
84
85
def __eq__(self, other: Any) -> bool:
    """Return equality for SwarmNode based on node_id."""
    if not isinstance(other, SwarmNode):
        return False
    return self.node_id == other.node_id

__hash__()

Return hash for SwarmNode based on node_id.

Source code in strands/multiagent/swarm.py
77
78
79
def __hash__(self) -> int:
    """Return hash for SwarmNode based on node_id."""
    return hash(self.node_id)

__post_init__()

Capture initial executor state after initialization.

Source code in strands/multiagent/swarm.py
71
72
73
74
75
def __post_init__(self) -> None:
    """Capture initial executor state after initialization."""
    # Deep copy the initial messages and state to preserve them
    self._initial_messages = copy.deepcopy(self.executor.messages)
    self._initial_state = AgentState(self.executor.state.get())

__repr__()

Return detailed representation of SwarmNode.

Source code in strands/multiagent/swarm.py
91
92
93
def __repr__(self) -> str:
    """Return detailed representation of SwarmNode."""
    return f"SwarmNode(node_id='{self.node_id}')"

__str__()

Return string representation of SwarmNode.

Source code in strands/multiagent/swarm.py
87
88
89
def __str__(self) -> str:
    """Return string representation of SwarmNode."""
    return self.node_id

reset_executor_state()

Reset SwarmNode executor state to initial state when swarm was created.

If Swarm is resuming from an interrupt, we reset the executor state from the interrupt context.

Source code in strands/multiagent/swarm.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
def reset_executor_state(self) -> None:
    """Reset SwarmNode executor state to initial state when swarm was created.

    If Swarm is resuming from an interrupt, we reset the executor state from the interrupt context.
    """
    if self.swarm and self.swarm._interrupt_state.activated:
        context = self.swarm._interrupt_state.context[self.node_id]
        self.executor.messages = context["messages"]
        self.executor.state = AgentState(context["state"])
        self.executor._interrupt_state = _InterruptState.from_dict(context["interrupt_state"])
        return

    self.executor.messages = copy.deepcopy(self._initial_messages)
    self.executor.state = AgentState(self._initial_state.get())

SwarmResult dataclass

Bases: MultiAgentResult

Result from swarm execution - extends MultiAgentResult with swarm-specific details.

Source code in strands/multiagent/swarm.py
221
222
223
224
225
@dataclass
class SwarmResult(MultiAgentResult):
    """Result from swarm execution - extends MultiAgentResult with swarm-specific details."""

    node_history: list[SwarmNode] = field(default_factory=list)

SwarmState dataclass

Current state of swarm execution.

Source code in strands/multiagent/swarm.py
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
@dataclass
class SwarmState:
    """Current state of swarm execution."""

    current_node: SwarmNode | None  # The agent currently executing
    task: MultiAgentInput  # The original task from the user that is being executed
    completion_status: Status = Status.PENDING  # Current swarm execution status
    shared_context: SharedContext = field(default_factory=SharedContext)  # Context shared between agents
    node_history: list[SwarmNode] = field(default_factory=list)  # Complete history of agents that have executed
    start_time: float = field(default_factory=time.time)  # When swarm execution began
    results: dict[str, NodeResult] = field(default_factory=dict)  # Results from each agent execution
    # Total token usage across all agents
    accumulated_usage: Usage = field(default_factory=lambda: Usage(inputTokens=0, outputTokens=0, totalTokens=0))
    # Total metrics across all agents
    accumulated_metrics: Metrics = field(default_factory=lambda: Metrics(latencyMs=0))
    execution_time: int = 0  # Total execution time in milliseconds
    handoff_node: SwarmNode | None = None  # The agent to execute next
    handoff_message: str | None = None  # Message passed during agent handoff

    def should_continue(
        self,
        *,
        max_handoffs: int,
        max_iterations: int,
        execution_timeout: float,
        repetitive_handoff_detection_window: int,
        repetitive_handoff_min_unique_agents: int,
    ) -> Tuple[bool, str]:
        """Check if the swarm should continue.

        Returns: (should_continue, reason)
        """
        # Check handoff limit
        if len(self.node_history) >= max_handoffs:
            return False, f"Max handoffs reached: {max_handoffs}"

        # Check iteration limit
        if len(self.node_history) >= max_iterations:
            return False, f"Max iterations reached: {max_iterations}"

        # Check timeout
        elapsed = time.time() - self.start_time
        if elapsed > execution_timeout:
            return False, f"Execution timed out: {execution_timeout}s"

        # Check for repetitive handoffs (agents passing back and forth)
        if repetitive_handoff_detection_window > 0 and len(self.node_history) >= repetitive_handoff_detection_window:
            recent = self.node_history[-repetitive_handoff_detection_window:]
            unique_nodes = len(set(recent))
            if unique_nodes < repetitive_handoff_min_unique_agents:
                return (
                    False,
                    (
                        f"Repetitive handoff: {unique_nodes} unique nodes "
                        f"out of {repetitive_handoff_detection_window} recent iterations"
                    ),
                )

        return True, "Continuing"

should_continue(*, max_handoffs, max_iterations, execution_timeout, repetitive_handoff_detection_window, repetitive_handoff_min_unique_agents)

Check if the swarm should continue.

Returns: (should_continue, reason)

Source code in strands/multiagent/swarm.py
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
def should_continue(
    self,
    *,
    max_handoffs: int,
    max_iterations: int,
    execution_timeout: float,
    repetitive_handoff_detection_window: int,
    repetitive_handoff_min_unique_agents: int,
) -> Tuple[bool, str]:
    """Check if the swarm should continue.

    Returns: (should_continue, reason)
    """
    # Check handoff limit
    if len(self.node_history) >= max_handoffs:
        return False, f"Max handoffs reached: {max_handoffs}"

    # Check iteration limit
    if len(self.node_history) >= max_iterations:
        return False, f"Max iterations reached: {max_iterations}"

    # Check timeout
    elapsed = time.time() - self.start_time
    if elapsed > execution_timeout:
        return False, f"Execution timed out: {execution_timeout}s"

    # Check for repetitive handoffs (agents passing back and forth)
    if repetitive_handoff_detection_window > 0 and len(self.node_history) >= repetitive_handoff_detection_window:
        recent = self.node_history[-repetitive_handoff_detection_window:]
        unique_nodes = len(set(recent))
        if unique_nodes < repetitive_handoff_min_unique_agents:
            return (
                False,
                (
                    f"Repetitive handoff: {unique_nodes} unique nodes "
                    f"out of {repetitive_handoff_detection_window} recent iterations"
                ),
            )

    return True, "Continuing"

Usage

Bases: TypedDict

Token usage information for model interactions.

Attributes:

Name Type Description
inputTokens Required[int]

Number of tokens sent in the request to the model.

outputTokens Required[int]

Number of tokens that the model generated for the request.

totalTokens Required[int]

Total number of tokens (input + output).

cacheReadInputTokens int

Number of tokens read from cache (optional).

cacheWriteInputTokens int

Number of tokens written to cache (optional).

Source code in strands/types/event_loop.py
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
class Usage(TypedDict, total=False):
    """Token usage information for model interactions.

    Attributes:
        inputTokens: Number of tokens sent in the request to the model.
        outputTokens: Number of tokens that the model generated for the request.
        totalTokens: Total number of tokens (input + output).
        cacheReadInputTokens: Number of tokens read from cache (optional).
        cacheWriteInputTokens: Number of tokens written to cache (optional).
    """

    inputTokens: Required[int]
    outputTokens: Required[int]
    totalTokens: Required[int]
    cacheReadInputTokens: int
    cacheWriteInputTokens: int

_InterruptState dataclass

Track the state of interrupt events raised by the user.

Note, interrupt state is cleared after resuming.

Attributes:

Name Type Description
interrupts dict[str, Interrupt]

Interrupts raised by the user.

context dict[str, Any]

Additional context associated with an interrupt event.

activated bool

True if agent is in an interrupt state, False otherwise.

Source code in strands/interrupt.py
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
@dataclass
class _InterruptState:
    """Track the state of interrupt events raised by the user.

    Note, interrupt state is cleared after resuming.

    Attributes:
        interrupts: Interrupts raised by the user.
        context: Additional context associated with an interrupt event.
        activated: True if agent is in an interrupt state, False otherwise.
    """

    interrupts: dict[str, Interrupt] = field(default_factory=dict)
    context: dict[str, Any] = field(default_factory=dict)
    activated: bool = False

    def activate(self) -> None:
        """Activate the interrupt state."""
        self.activated = True

    def deactivate(self) -> None:
        """Deacitvate the interrupt state.

        Interrupts and context are cleared.
        """
        self.interrupts = {}
        self.context = {}
        self.activated = False

    def resume(self, prompt: "AgentInput") -> None:
        """Configure the interrupt state if resuming from an interrupt event.

        Args:
            prompt: User responses if resuming from interrupt.

        Raises:
            TypeError: If in interrupt state but user did not provide responses.
        """
        if not self.activated:
            return

        if not isinstance(prompt, list):
            raise TypeError(f"prompt_type={type(prompt)} | must resume from interrupt with list of interruptResponse's")

        invalid_types = [
            content_type for content in prompt for content_type in content if content_type != "interruptResponse"
        ]
        if invalid_types:
            raise TypeError(
                f"content_types=<{invalid_types}> | must resume from interrupt with list of interruptResponse's"
            )

        contents = cast(list["InterruptResponseContent"], prompt)
        for content in contents:
            interrupt_id = content["interruptResponse"]["interruptId"]
            interrupt_response = content["interruptResponse"]["response"]

            if interrupt_id not in self.interrupts:
                raise KeyError(f"interrupt_id=<{interrupt_id}> | no interrupt found")

            self.interrupts[interrupt_id].response = interrupt_response

        self.context["responses"] = contents

    def to_dict(self) -> dict[str, Any]:
        """Serialize to dict for session management."""
        return asdict(self)

    @classmethod
    def from_dict(cls, data: dict[str, Any]) -> "_InterruptState":
        """Initiailize interrupt state from serialized interrupt state.

        Interrupt state can be serialized with the `to_dict` method.
        """
        return cls(
            interrupts={
                interrupt_id: Interrupt(**interrupt_data) for interrupt_id, interrupt_data in data["interrupts"].items()
            },
            context=data["context"],
            activated=data["activated"],
        )

activate()

Activate the interrupt state.

Source code in strands/interrupt.py
56
57
58
def activate(self) -> None:
    """Activate the interrupt state."""
    self.activated = True

deactivate()

Deacitvate the interrupt state.

Interrupts and context are cleared.

Source code in strands/interrupt.py
60
61
62
63
64
65
66
67
def deactivate(self) -> None:
    """Deacitvate the interrupt state.

    Interrupts and context are cleared.
    """
    self.interrupts = {}
    self.context = {}
    self.activated = False

from_dict(data) classmethod

Initiailize interrupt state from serialized interrupt state.

Interrupt state can be serialized with the to_dict method.

Source code in strands/interrupt.py
108
109
110
111
112
113
114
115
116
117
118
119
120
@classmethod
def from_dict(cls, data: dict[str, Any]) -> "_InterruptState":
    """Initiailize interrupt state from serialized interrupt state.

    Interrupt state can be serialized with the `to_dict` method.
    """
    return cls(
        interrupts={
            interrupt_id: Interrupt(**interrupt_data) for interrupt_id, interrupt_data in data["interrupts"].items()
        },
        context=data["context"],
        activated=data["activated"],
    )

resume(prompt)

Configure the interrupt state if resuming from an interrupt event.

Parameters:

Name Type Description Default
prompt AgentInput

User responses if resuming from interrupt.

required

Raises:

Type Description
TypeError

If in interrupt state but user did not provide responses.

Source code in strands/interrupt.py
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
def resume(self, prompt: "AgentInput") -> None:
    """Configure the interrupt state if resuming from an interrupt event.

    Args:
        prompt: User responses if resuming from interrupt.

    Raises:
        TypeError: If in interrupt state but user did not provide responses.
    """
    if not self.activated:
        return

    if not isinstance(prompt, list):
        raise TypeError(f"prompt_type={type(prompt)} | must resume from interrupt with list of interruptResponse's")

    invalid_types = [
        content_type for content in prompt for content_type in content if content_type != "interruptResponse"
    ]
    if invalid_types:
        raise TypeError(
            f"content_types=<{invalid_types}> | must resume from interrupt with list of interruptResponse's"
        )

    contents = cast(list["InterruptResponseContent"], prompt)
    for content in contents:
        interrupt_id = content["interruptResponse"]["interruptId"]
        interrupt_response = content["interruptResponse"]["response"]

        if interrupt_id not in self.interrupts:
            raise KeyError(f"interrupt_id=<{interrupt_id}> | no interrupt found")

        self.interrupts[interrupt_id].response = interrupt_response

    self.context["responses"] = contents

to_dict()

Serialize to dict for session management.

Source code in strands/interrupt.py
104
105
106
def to_dict(self) -> dict[str, Any]:
    """Serialize to dict for session management."""
    return asdict(self)

get_tracer()

Get or create the global tracer.

Returns:

Type Description
Tracer

The global tracer instance.

Source code in strands/telemetry/tracer.py
872
873
874
875
876
877
878
879
880
881
882
883
def get_tracer() -> Tracer:
    """Get or create the global tracer.

    Returns:
        The global tracer instance.
    """
    global _tracer_instance

    if not _tracer_instance:
        _tracer_instance = Tracer()

    return _tracer_instance

run_async(async_func)

Run an async function in a separate thread to avoid event loop conflicts.

This utility handles the common pattern of running async code from sync contexts by using ThreadPoolExecutor to isolate the async execution.

Parameters:

Name Type Description Default
async_func Callable[[], Awaitable[T]]

A callable that returns an awaitable

required

Returns:

Type Description
T

The result of the async function

Source code in strands/_async.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
def run_async(async_func: Callable[[], Awaitable[T]]) -> T:
    """Run an async function in a separate thread to avoid event loop conflicts.

    This utility handles the common pattern of running async code from sync contexts
    by using ThreadPoolExecutor to isolate the async execution.

    Args:
        async_func: A callable that returns an awaitable

    Returns:
        The result of the async function
    """

    async def execute_async() -> T:
        return await async_func()

    def execute() -> T:
        return asyncio.run(execute_async())

    with ThreadPoolExecutor() as executor:
        context = contextvars.copy_context()
        future = executor.submit(context.run, execute)
        return future.result()

tool(func=None, description=None, inputSchema=None, name=None, context=False)

tool(__func: Callable[P, R]) -> DecoratedFunctionTool[P, R]
tool(
    description: Optional[str] = None,
    inputSchema: Optional[JSONSchema] = None,
    name: Optional[str] = None,
    context: bool | str = False,
) -> Callable[
    [Callable[P, R]], DecoratedFunctionTool[P, R]
]

Decorator that transforms a Python function into a Strands tool.

This decorator seamlessly enables a function to be called both as a regular Python function and as a Strands tool. It extracts metadata from the function's signature, docstring, and type hints to generate an OpenAPI-compatible tool specification.

When decorated, a function:

  1. Still works as a normal function when called directly with arguments
  2. Processes tool use API calls when provided with a tool use dictionary
  3. Validates inputs against the function's type hints and parameter spec
  4. Formats return values according to the expected Strands tool result format
  5. Provides automatic error handling and reporting

The decorator can be used in two ways: - As a simple decorator: @tool - With parameters: @tool(name="custom_name", description="Custom description")

Parameters:

Name Type Description Default
func Optional[Callable[P, R]]

The function to decorate. When used as a simple decorator, this is the function being decorated. When used with parameters, this will be None.

None
description Optional[str]

Optional custom description to override the function's docstring.

None
inputSchema Optional[JSONSchema]

Optional custom JSON schema to override the automatically generated schema.

None
name Optional[str]

Optional custom name to override the function's name.

None
context bool | str

When provided, places an object in the designated parameter. If True, the param name defaults to 'tool_context', or if an override is needed, set context equal to a string to designate the param name.

False

Returns:

Type Description
Union[DecoratedFunctionTool[P, R], Callable[[Callable[P, R]], DecoratedFunctionTool[P, R]]]

An AgentTool that also mimics the original function when invoked

Example
@tool
def my_tool(name: str, count: int = 1) -> str:
    # Does something useful with the provided parameters.
    #
    # Parameters:
    #   name: The name to process
    #   count: Number of times to process (default: 1)
    #
    # Returns:
    #   A message with the result
    return f"Processed {name} {count} times"

agent = Agent(tools=[my_tool])
agent.my_tool(name="example", count=3)
# Returns: {
#   "toolUseId": "123",
#   "status": "success",
#   "content": [{"text": "Processed example 3 times"}]
# }
Example with parameters
@tool(name="custom_tool", description="A tool with a custom name and description", context=True)
def my_tool(name: str, count: int = 1, tool_context: ToolContext) -> str:
    tool_id = tool_context["tool_use"]["toolUseId"]
    return f"Processed {name} {count} times with tool ID {tool_id}"
Source code in strands/tools/decorator.py
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
def tool(  # type: ignore
    func: Optional[Callable[P, R]] = None,
    description: Optional[str] = None,
    inputSchema: Optional[JSONSchema] = None,
    name: Optional[str] = None,
    context: bool | str = False,
) -> Union[DecoratedFunctionTool[P, R], Callable[[Callable[P, R]], DecoratedFunctionTool[P, R]]]:
    """Decorator that transforms a Python function into a Strands tool.

    This decorator seamlessly enables a function to be called both as a regular Python function and as a Strands tool.
    It extracts metadata from the function's signature, docstring, and type hints to generate an OpenAPI-compatible tool
    specification.

    When decorated, a function:

    1. Still works as a normal function when called directly with arguments
    2. Processes tool use API calls when provided with a tool use dictionary
    3. Validates inputs against the function's type hints and parameter spec
    4. Formats return values according to the expected Strands tool result format
    5. Provides automatic error handling and reporting

    The decorator can be used in two ways:
    - As a simple decorator: `@tool`
    - With parameters: `@tool(name="custom_name", description="Custom description")`

    Args:
        func: The function to decorate. When used as a simple decorator, this is the function being decorated.
            When used with parameters, this will be None.
        description: Optional custom description to override the function's docstring.
        inputSchema: Optional custom JSON schema to override the automatically generated schema.
        name: Optional custom name to override the function's name.
        context: When provided, places an object in the designated parameter. If True, the param name
            defaults to 'tool_context', or if an override is needed, set context equal to a string to designate
            the param name.

    Returns:
        An AgentTool that also mimics the original function when invoked

    Example:
        ```python
        @tool
        def my_tool(name: str, count: int = 1) -> str:
            # Does something useful with the provided parameters.
            #
            # Parameters:
            #   name: The name to process
            #   count: Number of times to process (default: 1)
            #
            # Returns:
            #   A message with the result
            return f"Processed {name} {count} times"

        agent = Agent(tools=[my_tool])
        agent.my_tool(name="example", count=3)
        # Returns: {
        #   "toolUseId": "123",
        #   "status": "success",
        #   "content": [{"text": "Processed example 3 times"}]
        # }
        ```

    Example with parameters:
        ```python
        @tool(name="custom_tool", description="A tool with a custom name and description", context=True)
        def my_tool(name: str, count: int = 1, tool_context: ToolContext) -> str:
            tool_id = tool_context["tool_use"]["toolUseId"]
            return f"Processed {name} {count} times with tool ID {tool_id}"
        ```
    """

    def decorator(f: T) -> "DecoratedFunctionTool[P, R]":
        # Resolve context parameter name
        if isinstance(context, bool):
            context_param = "tool_context" if context else None
        else:
            context_param = context.strip()
            if not context_param:
                raise ValueError("Context parameter name cannot be empty")

        # Create function tool metadata
        tool_meta = FunctionToolMetadata(f, context_param)
        tool_spec = tool_meta.extract_metadata()
        if name is not None:
            tool_spec["name"] = name
        if description is not None:
            tool_spec["description"] = description
        if inputSchema is not None:
            tool_spec["inputSchema"] = inputSchema

        tool_name = tool_spec.get("name", f.__name__)

        if not isinstance(tool_name, str):
            raise ValueError(f"Tool name must be a string, got {type(tool_name)}")

        return DecoratedFunctionTool(tool_name, tool_spec, f, tool_meta)

    # Handle both @tool and @tool() syntax
    if func is None:
        # Need to ignore type-checking here since it's hard to represent the support
        # for both flows using the type system
        return decorator

    return decorator(func)