Skip to content

strands.session.repository_session_manager

Repository session manager implementation.

AgentState = JSONSerializableDict module-attribute

logger = logging.getLogger(__name__) module-attribute

Agent

Core Agent interface.

An agent orchestrates the following workflow:

  1. Receives user input
  2. Processes the input using a language model
  3. Decides whether to use tools to gather information or perform actions
  4. Executes those tools and receives results
  5. Continues reasoning with the new information
  6. Produces a final response
Source code in strands/agent/agent.py
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
class Agent:
    """Core Agent interface.

    An agent orchestrates the following workflow:

    1. Receives user input
    2. Processes the input using a language model
    3. Decides whether to use tools to gather information or perform actions
    4. Executes those tools and receives results
    5. Continues reasoning with the new information
    6. Produces a final response
    """

    # For backwards compatibility
    ToolCaller = _ToolCaller

    def __init__(
        self,
        model: Union[Model, str, None] = None,
        messages: Optional[Messages] = None,
        tools: Optional[list[Union[str, dict[str, str], "ToolProvider", Any]]] = None,
        system_prompt: Optional[str | list[SystemContentBlock]] = None,
        structured_output_model: Optional[Type[BaseModel]] = None,
        callback_handler: Optional[
            Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
        ] = _DEFAULT_CALLBACK_HANDLER,
        conversation_manager: Optional[ConversationManager] = None,
        record_direct_tool_call: bool = True,
        load_tools_from_directory: bool = False,
        trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
        *,
        agent_id: Optional[str] = None,
        name: Optional[str] = None,
        description: Optional[str] = None,
        state: Optional[Union[AgentState, dict]] = None,
        hooks: Optional[list[HookProvider]] = None,
        session_manager: Optional[SessionManager] = None,
        tool_executor: Optional[ToolExecutor] = None,
    ):
        """Initialize the Agent with the specified configuration.

        Args:
            model: Provider for running inference or a string representing the model-id for Bedrock to use.
                Defaults to strands.models.BedrockModel if None.
            messages: List of initial messages to pre-load into the conversation.
                Defaults to an empty list if None.
            tools: List of tools to make available to the agent.
                Can be specified as:

                - String tool names (e.g., "retrieve")
                - File paths (e.g., "/path/to/tool.py")
                - Imported Python modules (e.g., from strands_tools import current_time)
                - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
                - ToolProvider instances for managed tool collections
                - Functions decorated with `@strands.tool` decorator.

                If provided, only these tools will be available. If None, all tools will be available.
            system_prompt: System prompt to guide model behavior.
                Can be a string or a list of SystemContentBlock objects for advanced features like caching.
                If None, the model will behave according to its default settings.
            structured_output_model: Pydantic model type(s) for structured output.
                When specified, all agent calls will attempt to return structured output of this type.
                This can be overridden on the agent invocation.
                Defaults to None (no structured output).
            callback_handler: Callback for processing events as they happen during agent execution.
                If not provided (using the default), a new PrintingCallbackHandler instance is created.
                If explicitly set to None, null_callback_handler is used.
            conversation_manager: Manager for conversation history and context window.
                Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
            record_direct_tool_call: Whether to record direct tool calls in message history.
                Defaults to True.
            load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
                Defaults to False.
            trace_attributes: Custom trace attributes to apply to the agent's trace span.
            agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
                Defaults to "default".
            name: name of the Agent
                Defaults to "Strands Agents".
            description: description of what the Agent does
                Defaults to None.
            state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
                Defaults to an empty AgentState object.
            hooks: hooks to be added to the agent hook registry
                Defaults to None.
            session_manager: Manager for handling agent sessions including conversation history and state.
                If provided, enables session-based persistence and state management.
            tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

        Raises:
            ValueError: If agent id contains path separators.
        """
        self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
        self.messages = messages if messages is not None else []
        # initializing self._system_prompt for backwards compatibility
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
        self._default_structured_output_model = structured_output_model
        self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
        self.name = name or _DEFAULT_AGENT_NAME
        self.description = description

        # If not provided, create a new PrintingCallbackHandler instance
        # If explicitly set to None, use null_callback_handler
        # Otherwise use the passed callback_handler
        self.callback_handler: Union[Callable[..., Any], PrintingCallbackHandler]
        if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
            self.callback_handler = PrintingCallbackHandler()
        elif callback_handler is None:
            self.callback_handler = null_callback_handler
        else:
            self.callback_handler = callback_handler

        self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

        # Process trace attributes to ensure they're of compatible types
        self.trace_attributes: dict[str, AttributeValue] = {}
        if trace_attributes:
            for k, v in trace_attributes.items():
                if isinstance(v, (str, int, float, bool)) or (
                    isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
                ):
                    self.trace_attributes[k] = v

        self.record_direct_tool_call = record_direct_tool_call
        self.load_tools_from_directory = load_tools_from_directory

        self.tool_registry = ToolRegistry()

        # Process tool list if provided
        if tools is not None:
            self.tool_registry.process_tools(tools)

        # Initialize tools and configuration
        self.tool_registry.initialize_tools(self.load_tools_from_directory)
        if load_tools_from_directory:
            self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

        self.event_loop_metrics = EventLoopMetrics()

        # Initialize tracer instance (no-op if not configured)
        self.tracer = get_tracer()
        self.trace_span: Optional[trace_api.Span] = None

        # Initialize agent state management
        if state is not None:
            if isinstance(state, dict):
                self.state = AgentState(state)
            elif isinstance(state, AgentState):
                self.state = state
            else:
                raise ValueError("state must be an AgentState object or a dict")
        else:
            self.state = AgentState()

        self.tool_caller = _ToolCaller(self)

        self.hooks = HookRegistry()

        self._interrupt_state = _InterruptState()

        # Initialize session management functionality
        self._session_manager = session_manager
        if self._session_manager:
            self.hooks.add_hook(self._session_manager)

        # Allow conversation_managers to subscribe to hooks
        self.hooks.add_hook(self.conversation_manager)

        self.tool_executor = tool_executor or ConcurrentToolExecutor()

        if hooks:
            for hook in hooks:
                self.hooks.add_hook(hook)
        self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

    @property
    def system_prompt(self) -> str | None:
        """Get the system prompt as a string for backwards compatibility.

        Returns the system prompt as a concatenated string when it contains text content,
        or None if no text content is present. This maintains backwards compatibility
        with existing code that expects system_prompt to be a string.

        Returns:
            The system prompt as a string, or None if no text content exists.
        """
        return self._system_prompt

    @system_prompt.setter
    def system_prompt(self, value: str | list[SystemContentBlock] | None) -> None:
        """Set the system prompt and update internal content representation.

        Accepts either a string or list of SystemContentBlock objects.
        When set, both the backwards-compatible string representation and the internal
        content block representation are updated to maintain consistency.

        Args:
            value: System prompt as string, list of SystemContentBlock objects, or None.
                  - str: Simple text prompt (most common use case)
                  - list[SystemContentBlock]: Content blocks with features like caching
                  - None: Clear the system prompt
        """
        self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(value)

    @property
    def tool(self) -> _ToolCaller:
        """Call tool as a function.

        Returns:
            Tool caller through which user can invoke tool as a function.

        Example:
            ```
            agent = Agent(tools=[calculator])
            agent.tool.calculator(...)
            ```
        """
        return self.tool_caller

    @property
    def tool_names(self) -> list[str]:
        """Get a list of all registered tool names.

        Returns:
            Names of all tools available to this agent.
        """
        all_tools = self.tool_registry.get_all_tools_config()
        return list(all_tools.keys())

    def __call__(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: `agent("hello!")`
        - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
        - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
        - No input: `agent()` - uses existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
                - structured_output: Parsed structured output when structured_output_model was specified
        """
        return run_async(
            lambda: self.invoke_async(
                prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
            )
        )

    async def invoke_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AgentResult:
        """Process a natural language prompt through the agent's event loop.

        This method implements the conversational interface with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass through the event loop.[Deprecating]

        Returns:
            Result: object containing:

                - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
                - message: The final message from the model
                - metrics: Performance metrics from the event loop
                - state: The final state of the event loop
        """
        events = self.stream_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
        async for event in events:
            _ = event

        return cast(AgentResult, event["result"])

    def structured_output(self, output_model: Type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history

        Raises:
            ValueError: If no conversation history or prompt is provided.
        """
        warnings.warn(
            "Agent.structured_output method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )

        return run_async(lambda: self.structured_output_async(output_model, prompt))

    async def structured_output_async(self, output_model: Type[T], prompt: AgentInput = None) -> T:
        """This method allows you to get structured output from the agent.

        If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
        If you don't pass in a prompt, it will use only the existing conversation history to respond.

        For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
        instruct the model to output the structured data.

        Args:
            output_model: The output model (a JSON schema written as a Pydantic BaseModel)
                that the agent will use when responding.
            prompt: The prompt to use for the agent (will not be added to conversation history).

        Raises:
            ValueError: If no conversation history or prompt is provided.
        -
        """
        if self._interrupt_state.activated:
            raise RuntimeError("cannot call structured output during interrupt")

        warnings.warn(
            "Agent.structured_output_async method is deprecated."
            " You should pass in `structured_output_model` directly into the agent invocation."
            " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
            category=DeprecationWarning,
            stacklevel=2,
        )
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))
        with self.tracer.tracer.start_as_current_span(
            "execute_structured_output", kind=trace_api.SpanKind.CLIENT
        ) as structured_output_span:
            try:
                if not self.messages and not prompt:
                    raise ValueError("No conversation history or prompt provided")

                temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

                structured_output_span.set_attributes(
                    {
                        "gen_ai.system": "strands-agents",
                        "gen_ai.agent.name": self.name,
                        "gen_ai.agent.id": self.agent_id,
                        "gen_ai.operation.name": "execute_structured_output",
                    }
                )
                if self.system_prompt:
                    structured_output_span.add_event(
                        "gen_ai.system.message",
                        attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                    )
                for message in temp_messages:
                    structured_output_span.add_event(
                        f"gen_ai.{message['role']}.message",
                        attributes={"role": message["role"], "content": serialize(message["content"])},
                    )
                events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
                async for event in events:
                    if isinstance(event, TypedEvent):
                        event.prepare(invocation_state={})
                        if event.is_callback_event:
                            self.callback_handler(**event.as_dict())

                structured_output_span.add_event(
                    "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
                )
                return event["output"]

            finally:
                await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

    def cleanup(self) -> None:
        """Clean up resources used by the agent.

        This method cleans up all tool providers that require explicit cleanup,
        such as MCP clients. It should be called when the agent is no longer needed
        to ensure proper resource cleanup.

        Note: This method uses a "belt and braces" approach with automatic cleanup
        through finalizers as a fallback, but explicit cleanup is recommended.
        """
        self.tool_registry.cleanup()

    def __del__(self) -> None:
        """Clean up resources when agent is garbage collected."""
        # __del__ is called even when an exception is thrown in the constructor,
        # so there is no guarantee tool_registry was set..
        if hasattr(self, "tool_registry"):
            self.tool_registry.cleanup()

    async def stream_async(
        self,
        prompt: AgentInput = None,
        *,
        invocation_state: dict[str, Any] | None = None,
        structured_output_model: Type[BaseModel] | None = None,
        **kwargs: Any,
    ) -> AsyncIterator[Any]:
        """Process a natural language prompt and yield events as an async iterator.

        This method provides an asynchronous interface for streaming agent events with multiple input patterns:
        - String input: Simple text input
        - ContentBlock list: Multi-modal content blocks
        - Message list: Complete messages with roles
        - No input: Use existing conversation history

        Args:
            prompt: User input in various formats:
                - str: Simple text input
                - list[ContentBlock]: Multi-modal content blocks
                - list[Message]: Complete messages with roles
                - None: Use existing conversation history
            invocation_state: Additional parameters to pass through the event loop.
            structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
            **kwargs: Additional parameters to pass to the event loop.[Deprecating]

        Yields:
            An async iterator that yields events. Each event is a dictionary containing
                information about the current state of processing, such as:

                - data: Text content being generated
                - complete: Whether this is the final chunk
                - current_tool_use: Information about tools being executed
                - And other event data provided by the callback handler

        Raises:
            Exception: Any exceptions from the agent invocation will be propagated to the caller.

        Example:
            ```python
            async for event in agent.stream_async("Analyze this data"):
                if "data" in event:
                    yield event["data"]
            ```
        """
        self._interrupt_state.resume(prompt)

        self.event_loop_metrics.reset_usage_metrics()

        merged_state = {}
        if kwargs:
            warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
            merged_state.update(kwargs)
            if invocation_state is not None:
                merged_state["invocation_state"] = invocation_state
        else:
            if invocation_state is not None:
                merged_state = invocation_state

        callback_handler = self.callback_handler
        if kwargs:
            callback_handler = kwargs.get("callback_handler", self.callback_handler)

        # Process input and get message to add (if any)
        messages = await self._convert_prompt_to_messages(prompt)

        self.trace_span = self._start_agent_trace_span(messages)

        with trace_api.use_span(self.trace_span):
            try:
                events = self._run_loop(messages, merged_state, structured_output_model)

                async for event in events:
                    event.prepare(invocation_state=merged_state)

                    if event.is_callback_event:
                        as_dict = event.as_dict()
                        callback_handler(**as_dict)
                        yield as_dict

                result = AgentResult(*event["stop"])
                callback_handler(result=result)
                yield AgentResultEvent(result=result).as_dict()

                self._end_agent_trace_span(response=result)

            except Exception as e:
                self._end_agent_trace_span(error=e)
                raise

    async def _run_loop(
        self,
        messages: Messages,
        invocation_state: dict[str, Any],
        structured_output_model: Type[BaseModel] | None = None,
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the agent's event loop with the given message and parameters.

        Args:
            messages: The input messages to add to the conversation.
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_model: Optional Pydantic model type for structured output.

        Yields:
            Events from the event loop cycle.
        """
        await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))

        agent_result: AgentResult | None = None
        try:
            yield InitEventLoopEvent()

            await self._append_messages(*messages)

            structured_output_context = StructuredOutputContext(
                structured_output_model or self._default_structured_output_model
            )

            # Execute the event loop cycle with retry logic for context limits
            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                # Signal from the model provider that the message sent by the user should be redacted,
                # likely due to a guardrail.
                if (
                    isinstance(event, ModelStreamChunkEvent)
                    and event.chunk
                    and event.chunk.get("redactContent")
                    and event.chunk["redactContent"].get("redactUserContentMessage")
                ):
                    self.messages[-1]["content"] = self._redact_user_content(
                        self.messages[-1]["content"], str(event.chunk["redactContent"]["redactUserContentMessage"])
                    )
                    if self._session_manager:
                        self._session_manager.redact_latest_message(self.messages[-1], self)
                yield event

            # Capture the result from the final event if available
            if isinstance(event, EventLoopStopEvent):
                agent_result = AgentResult(*event["stop"])

        finally:
            self.conversation_manager.apply_management(self)
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self, result=agent_result))

    async def _execute_event_loop_cycle(
        self, invocation_state: dict[str, Any], structured_output_context: StructuredOutputContext | None = None
    ) -> AsyncGenerator[TypedEvent, None]:
        """Execute the event loop cycle with retry logic for context window limits.

        This internal method handles the execution of the event loop cycle and implements
        retry logic for handling context window overflow exceptions by reducing the
        conversation context and retrying.

        Args:
            invocation_state: Additional parameters to pass to the event loop.
            structured_output_context: Optional structured output context for this invocation.

        Yields:
            Events of the loop cycle.
        """
        # Add `Agent` to invocation_state to keep backwards-compatibility
        invocation_state["agent"] = self

        if structured_output_context:
            structured_output_context.register_tool(self.tool_registry)

        try:
            events = event_loop_cycle(
                agent=self,
                invocation_state=invocation_state,
                structured_output_context=structured_output_context,
            )
            async for event in events:
                yield event

        except ContextWindowOverflowException as e:
            # Try reducing the context size and retrying
            self.conversation_manager.reduce_context(self, e=e)

            # Sync agent after reduce_context to keep conversation_manager_state up to date in the session
            if self._session_manager:
                self._session_manager.sync_agent(self)

            events = self._execute_event_loop_cycle(invocation_state, structured_output_context)
            async for event in events:
                yield event

        finally:
            if structured_output_context:
                structured_output_context.cleanup(self.tool_registry)

    async def _convert_prompt_to_messages(self, prompt: AgentInput) -> Messages:
        if self._interrupt_state.activated:
            return []

        messages: Messages | None = None
        if prompt is not None:
            # Check if the latest message is toolUse
            if len(self.messages) > 0 and any("toolUse" in content for content in self.messages[-1]["content"]):
                # Add toolResult message after to have a valid conversation
                logger.info(
                    "Agents latest message is toolUse, appending a toolResult message to have valid conversation."
                )
                tool_use_ids = [
                    content["toolUse"]["toolUseId"] for content in self.messages[-1]["content"] if "toolUse" in content
                ]
                await self._append_messages(
                    {
                        "role": "user",
                        "content": generate_missing_tool_result_content(tool_use_ids),
                    }
                )
            if isinstance(prompt, str):
                # String input - convert to user message
                messages = [{"role": "user", "content": [{"text": prompt}]}]
            elif isinstance(prompt, list):
                if len(prompt) == 0:
                    # Empty list
                    messages = []
                # Check if all item in input list are dictionaries
                elif all(isinstance(item, dict) for item in prompt):
                    # Check if all items are messages
                    if all(all(key in item for key in Message.__annotations__.keys()) for item in prompt):
                        # Messages input - add all messages to conversation
                        messages = cast(Messages, prompt)

                    # Check if all items are content blocks
                    elif all(any(key in ContentBlock.__annotations__.keys() for key in item) for item in prompt):
                        # Treat as List[ContentBlock] input - convert to user message
                        # This allows invalid structures to be passed through to the model
                        messages = [{"role": "user", "content": cast(list[ContentBlock], prompt)}]
        else:
            messages = []
        if messages is None:
            raise ValueError("Input prompt must be of type: `str | list[Contentblock] | Messages | None`.")
        return messages

    def _start_agent_trace_span(self, messages: Messages) -> trace_api.Span:
        """Starts a trace span for the agent.

        Args:
            messages: The input messages.
        """
        model_id = self.model.config.get("model_id") if hasattr(self.model, "config") else None
        return self.tracer.start_agent_span(
            messages=messages,
            agent_name=self.name,
            model_id=model_id,
            tools=self.tool_names,
            system_prompt=self.system_prompt,
            custom_trace_attributes=self.trace_attributes,
            tools_config=self.tool_registry.get_all_tools_config(),
        )

    def _end_agent_trace_span(
        self,
        response: Optional[AgentResult] = None,
        error: Optional[Exception] = None,
    ) -> None:
        """Ends a trace span for the agent.

        Args:
            span: The span to end.
            response: Response to record as a trace attribute.
            error: Error to record as a trace attribute.
        """
        if self.trace_span:
            trace_attributes: dict[str, Any] = {
                "span": self.trace_span,
            }

            if response:
                trace_attributes["response"] = response
            if error:
                trace_attributes["error"] = error

            self.tracer.end_agent_span(**trace_attributes)

    def _initialize_system_prompt(
        self, system_prompt: str | list[SystemContentBlock] | None
    ) -> tuple[str | None, list[SystemContentBlock] | None]:
        """Initialize system prompt fields from constructor input.

        Maintains backwards compatibility by keeping system_prompt as str when string input
        provided, avoiding breaking existing consumers.

        Maps system_prompt input to both string and content block representations:
        - If string: system_prompt=string, _system_prompt_content=[{text: string}]
        - If list with text elements: system_prompt=concatenated_text, _system_prompt_content=list
        - If list without text elements: system_prompt=None, _system_prompt_content=list
        - If None: system_prompt=None, _system_prompt_content=None
        """
        if isinstance(system_prompt, str):
            return system_prompt, [{"text": system_prompt}]
        elif isinstance(system_prompt, list):
            # Concatenate all text elements for backwards compatibility, None if no text found
            text_parts = [block["text"] for block in system_prompt if "text" in block]
            system_prompt_str = "\n".join(text_parts) if text_parts else None
            return system_prompt_str, system_prompt
        else:
            return None, None

    async def _append_messages(self, *messages: Message) -> None:
        """Appends messages to history and invoke the callbacks for the MessageAddedEvent."""
        for message in messages:
            self.messages.append(message)
            await self.hooks.invoke_callbacks_async(MessageAddedEvent(agent=self, message=message))

    def _redact_user_content(self, content: list[ContentBlock], redact_message: str) -> list[ContentBlock]:
        """Redact user content preserving toolResult blocks.

        Args:
            content: content blocks to be redacted
            redact_message: redact message to be replaced

        Returns:
            Redacted content, as follows:
            - if the message contains at least a toolResult block,
                all toolResult blocks(s) are kept, redacting only the result content;
            - otherwise, the entire content of the message is replaced
                with a single text block with the redact message.
        """
        redacted_content = []
        for block in content:
            if "toolResult" in block:
                block["toolResult"]["content"] = [{"text": redact_message}]
                redacted_content.append(block)

        if not redacted_content:
            # Text content is added only if no toolResult blocks were found
            redacted_content = [{"text": redact_message}]

        return redacted_content

system_prompt property writable

Get the system prompt as a string for backwards compatibility.

Returns the system prompt as a concatenated string when it contains text content, or None if no text content is present. This maintains backwards compatibility with existing code that expects system_prompt to be a string.

Returns:

Type Description
str | None

The system prompt as a string, or None if no text content exists.

tool property

Call tool as a function.

Returns:

Type Description
_ToolCaller

Tool caller through which user can invoke tool as a function.

Example
agent = Agent(tools=[calculator])
agent.tool.calculator(...)

tool_names property

Get a list of all registered tool names.

Returns:

Type Description
list[str]

Names of all tools available to this agent.

__call__(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs)

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: agent("hello!") - ContentBlock list: agent([{"text": "hello"}, {"image": {...}}]) - Message list: agent([{"role": "user", "content": [{"text": "hello"}]}]) - No input: agent() - uses existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Type Description
AgentResult

Result object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
  • structured_output: Parsed structured output when structured_output_model was specified
Source code in strands/agent/agent.py
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def __call__(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: `agent("hello!")`
    - ContentBlock list: `agent([{"text": "hello"}, {"image": {...}}])`
    - Message list: `agent([{"role": "user", "content": [{"text": "hello"}]}])`
    - No input: `agent()` - uses existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
            - structured_output: Parsed structured output when structured_output_model was specified
    """
    return run_async(
        lambda: self.invoke_async(
            prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
        )
    )

__del__()

Clean up resources when agent is garbage collected.

Source code in strands/agent/agent.py
514
515
516
517
518
519
def __del__(self) -> None:
    """Clean up resources when agent is garbage collected."""
    # __del__ is called even when an exception is thrown in the constructor,
    # so there is no guarantee tool_registry was set..
    if hasattr(self, "tool_registry"):
        self.tool_registry.cleanup()

__init__(model=None, messages=None, tools=None, system_prompt=None, structured_output_model=None, callback_handler=_DEFAULT_CALLBACK_HANDLER, conversation_manager=None, record_direct_tool_call=True, load_tools_from_directory=False, trace_attributes=None, *, agent_id=None, name=None, description=None, state=None, hooks=None, session_manager=None, tool_executor=None)

Initialize the Agent with the specified configuration.

Parameters:

Name Type Description Default
model Union[Model, str, None]

Provider for running inference or a string representing the model-id for Bedrock to use. Defaults to strands.models.BedrockModel if None.

None
messages Optional[Messages]

List of initial messages to pre-load into the conversation. Defaults to an empty list if None.

None
tools Optional[list[Union[str, dict[str, str], ToolProvider, Any]]]

List of tools to make available to the agent. Can be specified as:

  • String tool names (e.g., "retrieve")
  • File paths (e.g., "/path/to/tool.py")
  • Imported Python modules (e.g., from strands_tools import current_time)
  • Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
  • ToolProvider instances for managed tool collections
  • Functions decorated with @strands.tool decorator.

If provided, only these tools will be available. If None, all tools will be available.

None
system_prompt Optional[str | list[SystemContentBlock]]

System prompt to guide model behavior. Can be a string or a list of SystemContentBlock objects for advanced features like caching. If None, the model will behave according to its default settings.

None
structured_output_model Optional[Type[BaseModel]]

Pydantic model type(s) for structured output. When specified, all agent calls will attempt to return structured output of this type. This can be overridden on the agent invocation. Defaults to None (no structured output).

None
callback_handler Optional[Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]]

Callback for processing events as they happen during agent execution. If not provided (using the default), a new PrintingCallbackHandler instance is created. If explicitly set to None, null_callback_handler is used.

_DEFAULT_CALLBACK_HANDLER
conversation_manager Optional[ConversationManager]

Manager for conversation history and context window. Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.

None
record_direct_tool_call bool

Whether to record direct tool calls in message history. Defaults to True.

True
load_tools_from_directory bool

Whether to load and automatically reload tools in the ./tools/ directory. Defaults to False.

False
trace_attributes Optional[Mapping[str, AttributeValue]]

Custom trace attributes to apply to the agent's trace span.

None
agent_id Optional[str]

Optional ID for the agent, useful for session management and multi-agent scenarios. Defaults to "default".

None
name Optional[str]

name of the Agent Defaults to "Strands Agents".

None
description Optional[str]

description of what the Agent does Defaults to None.

None
state Optional[Union[AgentState, dict]]

stateful information for the agent. Can be either an AgentState object, or a json serializable dict. Defaults to an empty AgentState object.

None
hooks Optional[list[HookProvider]]

hooks to be added to the agent hook registry Defaults to None.

None
session_manager Optional[SessionManager]

Manager for handling agent sessions including conversation history and state. If provided, enables session-based persistence and state management.

None
tool_executor Optional[ToolExecutor]

Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

None

Raises:

Type Description
ValueError

If agent id contains path separators.

Source code in strands/agent/agent.py
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
def __init__(
    self,
    model: Union[Model, str, None] = None,
    messages: Optional[Messages] = None,
    tools: Optional[list[Union[str, dict[str, str], "ToolProvider", Any]]] = None,
    system_prompt: Optional[str | list[SystemContentBlock]] = None,
    structured_output_model: Optional[Type[BaseModel]] = None,
    callback_handler: Optional[
        Union[Callable[..., Any], _DefaultCallbackHandlerSentinel]
    ] = _DEFAULT_CALLBACK_HANDLER,
    conversation_manager: Optional[ConversationManager] = None,
    record_direct_tool_call: bool = True,
    load_tools_from_directory: bool = False,
    trace_attributes: Optional[Mapping[str, AttributeValue]] = None,
    *,
    agent_id: Optional[str] = None,
    name: Optional[str] = None,
    description: Optional[str] = None,
    state: Optional[Union[AgentState, dict]] = None,
    hooks: Optional[list[HookProvider]] = None,
    session_manager: Optional[SessionManager] = None,
    tool_executor: Optional[ToolExecutor] = None,
):
    """Initialize the Agent with the specified configuration.

    Args:
        model: Provider for running inference or a string representing the model-id for Bedrock to use.
            Defaults to strands.models.BedrockModel if None.
        messages: List of initial messages to pre-load into the conversation.
            Defaults to an empty list if None.
        tools: List of tools to make available to the agent.
            Can be specified as:

            - String tool names (e.g., "retrieve")
            - File paths (e.g., "/path/to/tool.py")
            - Imported Python modules (e.g., from strands_tools import current_time)
            - Dictionaries with name/path keys (e.g., {"name": "tool_name", "path": "/path/to/tool.py"})
            - ToolProvider instances for managed tool collections
            - Functions decorated with `@strands.tool` decorator.

            If provided, only these tools will be available. If None, all tools will be available.
        system_prompt: System prompt to guide model behavior.
            Can be a string or a list of SystemContentBlock objects for advanced features like caching.
            If None, the model will behave according to its default settings.
        structured_output_model: Pydantic model type(s) for structured output.
            When specified, all agent calls will attempt to return structured output of this type.
            This can be overridden on the agent invocation.
            Defaults to None (no structured output).
        callback_handler: Callback for processing events as they happen during agent execution.
            If not provided (using the default), a new PrintingCallbackHandler instance is created.
            If explicitly set to None, null_callback_handler is used.
        conversation_manager: Manager for conversation history and context window.
            Defaults to strands.agent.conversation_manager.SlidingWindowConversationManager if None.
        record_direct_tool_call: Whether to record direct tool calls in message history.
            Defaults to True.
        load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
            Defaults to False.
        trace_attributes: Custom trace attributes to apply to the agent's trace span.
        agent_id: Optional ID for the agent, useful for session management and multi-agent scenarios.
            Defaults to "default".
        name: name of the Agent
            Defaults to "Strands Agents".
        description: description of what the Agent does
            Defaults to None.
        state: stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
            Defaults to an empty AgentState object.
        hooks: hooks to be added to the agent hook registry
            Defaults to None.
        session_manager: Manager for handling agent sessions including conversation history and state.
            If provided, enables session-based persistence and state management.
        tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

    Raises:
        ValueError: If agent id contains path separators.
    """
    self.model = BedrockModel() if not model else BedrockModel(model_id=model) if isinstance(model, str) else model
    self.messages = messages if messages is not None else []
    # initializing self._system_prompt for backwards compatibility
    self._system_prompt, self._system_prompt_content = self._initialize_system_prompt(system_prompt)
    self._default_structured_output_model = structured_output_model
    self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
    self.name = name or _DEFAULT_AGENT_NAME
    self.description = description

    # If not provided, create a new PrintingCallbackHandler instance
    # If explicitly set to None, use null_callback_handler
    # Otherwise use the passed callback_handler
    self.callback_handler: Union[Callable[..., Any], PrintingCallbackHandler]
    if isinstance(callback_handler, _DefaultCallbackHandlerSentinel):
        self.callback_handler = PrintingCallbackHandler()
    elif callback_handler is None:
        self.callback_handler = null_callback_handler
    else:
        self.callback_handler = callback_handler

    self.conversation_manager = conversation_manager if conversation_manager else SlidingWindowConversationManager()

    # Process trace attributes to ensure they're of compatible types
    self.trace_attributes: dict[str, AttributeValue] = {}
    if trace_attributes:
        for k, v in trace_attributes.items():
            if isinstance(v, (str, int, float, bool)) or (
                isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
            ):
                self.trace_attributes[k] = v

    self.record_direct_tool_call = record_direct_tool_call
    self.load_tools_from_directory = load_tools_from_directory

    self.tool_registry = ToolRegistry()

    # Process tool list if provided
    if tools is not None:
        self.tool_registry.process_tools(tools)

    # Initialize tools and configuration
    self.tool_registry.initialize_tools(self.load_tools_from_directory)
    if load_tools_from_directory:
        self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

    self.event_loop_metrics = EventLoopMetrics()

    # Initialize tracer instance (no-op if not configured)
    self.tracer = get_tracer()
    self.trace_span: Optional[trace_api.Span] = None

    # Initialize agent state management
    if state is not None:
        if isinstance(state, dict):
            self.state = AgentState(state)
        elif isinstance(state, AgentState):
            self.state = state
        else:
            raise ValueError("state must be an AgentState object or a dict")
    else:
        self.state = AgentState()

    self.tool_caller = _ToolCaller(self)

    self.hooks = HookRegistry()

    self._interrupt_state = _InterruptState()

    # Initialize session management functionality
    self._session_manager = session_manager
    if self._session_manager:
        self.hooks.add_hook(self._session_manager)

    # Allow conversation_managers to subscribe to hooks
    self.hooks.add_hook(self.conversation_manager)

    self.tool_executor = tool_executor or ConcurrentToolExecutor()

    if hooks:
        for hook in hooks:
            self.hooks.add_hook(hook)
    self.hooks.invoke_callbacks(AgentInitializedEvent(agent=self))

cleanup()

Clean up resources used by the agent.

This method cleans up all tool providers that require explicit cleanup, such as MCP clients. It should be called when the agent is no longer needed to ensure proper resource cleanup.

Note: This method uses a "belt and braces" approach with automatic cleanup through finalizers as a fallback, but explicit cleanup is recommended.

Source code in strands/agent/agent.py
502
503
504
505
506
507
508
509
510
511
512
def cleanup(self) -> None:
    """Clean up resources used by the agent.

    This method cleans up all tool providers that require explicit cleanup,
    such as MCP clients. It should be called when the agent is no longer needed
    to ensure proper resource cleanup.

    Note: This method uses a "belt and braces" approach with automatic cleanup
    through finalizers as a fallback, but explicit cleanup is recommended.
    """
    self.tool_registry.cleanup()

invoke_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt through the agent's event loop.

This method implements the conversational interface with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass through the event loop.[Deprecating]

{}

Returns:

Name Type Description
Result AgentResult

object containing:

  • stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
  • message: The final message from the model
  • metrics: Performance metrics from the event loop
  • state: The final state of the event loop
Source code in strands/agent/agent.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
async def invoke_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AgentResult:
    """Process a natural language prompt through the agent's event loop.

    This method implements the conversational interface with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass through the event loop.[Deprecating]

    Returns:
        Result: object containing:

            - stop_reason: Why the event loop stopped (e.g., "end_turn", "max_tokens")
            - message: The final message from the model
            - metrics: Performance metrics from the event loop
            - state: The final state of the event loop
    """
    events = self.stream_async(
        prompt, invocation_state=invocation_state, structured_output_model=structured_output_model, **kwargs
    )
    async for event in events:
        _ = event

    return cast(AgentResult, event["result"])

stream_async(prompt=None, *, invocation_state=None, structured_output_model=None, **kwargs) async

Process a natural language prompt and yield events as an async iterator.

This method provides an asynchronous interface for streaming agent events with multiple input patterns: - String input: Simple text input - ContentBlock list: Multi-modal content blocks - Message list: Complete messages with roles - No input: Use existing conversation history

Parameters:

Name Type Description Default
prompt AgentInput

User input in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None
invocation_state dict[str, Any] | None

Additional parameters to pass through the event loop.

None
structured_output_model Type[BaseModel] | None

Pydantic model type(s) for structured output (overrides agent default).

None
**kwargs Any

Additional parameters to pass to the event loop.[Deprecating]

{}

Yields:

Type Description
AsyncIterator[Any]

An async iterator that yields events. Each event is a dictionary containing information about the current state of processing, such as:

  • data: Text content being generated
  • complete: Whether this is the final chunk
  • current_tool_use: Information about tools being executed
  • And other event data provided by the callback handler

Raises:

Type Description
Exception

Any exceptions from the agent invocation will be propagated to the caller.

Example
async for event in agent.stream_async("Analyze this data"):
    if "data" in event:
        yield event["data"]
Source code in strands/agent/agent.py
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
async def stream_async(
    self,
    prompt: AgentInput = None,
    *,
    invocation_state: dict[str, Any] | None = None,
    structured_output_model: Type[BaseModel] | None = None,
    **kwargs: Any,
) -> AsyncIterator[Any]:
    """Process a natural language prompt and yield events as an async iterator.

    This method provides an asynchronous interface for streaming agent events with multiple input patterns:
    - String input: Simple text input
    - ContentBlock list: Multi-modal content blocks
    - Message list: Complete messages with roles
    - No input: Use existing conversation history

    Args:
        prompt: User input in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history
        invocation_state: Additional parameters to pass through the event loop.
        structured_output_model: Pydantic model type(s) for structured output (overrides agent default).
        **kwargs: Additional parameters to pass to the event loop.[Deprecating]

    Yields:
        An async iterator that yields events. Each event is a dictionary containing
            information about the current state of processing, such as:

            - data: Text content being generated
            - complete: Whether this is the final chunk
            - current_tool_use: Information about tools being executed
            - And other event data provided by the callback handler

    Raises:
        Exception: Any exceptions from the agent invocation will be propagated to the caller.

    Example:
        ```python
        async for event in agent.stream_async("Analyze this data"):
            if "data" in event:
                yield event["data"]
        ```
    """
    self._interrupt_state.resume(prompt)

    self.event_loop_metrics.reset_usage_metrics()

    merged_state = {}
    if kwargs:
        warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)
        merged_state.update(kwargs)
        if invocation_state is not None:
            merged_state["invocation_state"] = invocation_state
    else:
        if invocation_state is not None:
            merged_state = invocation_state

    callback_handler = self.callback_handler
    if kwargs:
        callback_handler = kwargs.get("callback_handler", self.callback_handler)

    # Process input and get message to add (if any)
    messages = await self._convert_prompt_to_messages(prompt)

    self.trace_span = self._start_agent_trace_span(messages)

    with trace_api.use_span(self.trace_span):
        try:
            events = self._run_loop(messages, merged_state, structured_output_model)

            async for event in events:
                event.prepare(invocation_state=merged_state)

                if event.is_callback_event:
                    as_dict = event.as_dict()
                    callback_handler(**as_dict)
                    yield as_dict

            result = AgentResult(*event["stop"])
            callback_handler(result=result)
            yield AgentResultEvent(result=result).as_dict()

            self._end_agent_trace_span(response=result)

        except Exception as e:
            self._end_agent_trace_span(error=e)
            raise

structured_output(output_model, prompt=None)

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model Type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent in various formats: - str: Simple text input - list[ContentBlock]: Multi-modal content blocks - list[Message]: Complete messages with roles - None: Use existing conversation history

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

Source code in strands/agent/agent.py
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
def structured_output(self, output_model: Type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent in various formats:
            - str: Simple text input
            - list[ContentBlock]: Multi-modal content blocks
            - list[Message]: Complete messages with roles
            - None: Use existing conversation history

    Raises:
        ValueError: If no conversation history or prompt is provided.
    """
    warnings.warn(
        "Agent.structured_output method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )

    return run_async(lambda: self.structured_output_async(output_model, prompt))

structured_output_async(output_model, prompt=None) async

This method allows you to get structured output from the agent.

If you pass in a prompt, it will be used temporarily without adding it to the conversation history. If you don't pass in a prompt, it will use only the existing conversation history to respond.

For smaller models, you may want to use the optional prompt to add additional instructions to explicitly instruct the model to output the structured data.

Parameters:

Name Type Description Default
output_model Type[T]

The output model (a JSON schema written as a Pydantic BaseModel) that the agent will use when responding.

required
prompt AgentInput

The prompt to use for the agent (will not be added to conversation history).

None

Raises:

Type Description
ValueError

If no conversation history or prompt is provided.

-

Source code in strands/agent/agent.py
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
async def structured_output_async(self, output_model: Type[T], prompt: AgentInput = None) -> T:
    """This method allows you to get structured output from the agent.

    If you pass in a prompt, it will be used temporarily without adding it to the conversation history.
    If you don't pass in a prompt, it will use only the existing conversation history to respond.

    For smaller models, you may want to use the optional prompt to add additional instructions to explicitly
    instruct the model to output the structured data.

    Args:
        output_model: The output model (a JSON schema written as a Pydantic BaseModel)
            that the agent will use when responding.
        prompt: The prompt to use for the agent (will not be added to conversation history).

    Raises:
        ValueError: If no conversation history or prompt is provided.
    -
    """
    if self._interrupt_state.activated:
        raise RuntimeError("cannot call structured output during interrupt")

    warnings.warn(
        "Agent.structured_output_async method is deprecated."
        " You should pass in `structured_output_model` directly into the agent invocation."
        " see: https://strandsagents.com/latest/documentation/docs/user-guide/concepts/agents/structured-output/",
        category=DeprecationWarning,
        stacklevel=2,
    )
    await self.hooks.invoke_callbacks_async(BeforeInvocationEvent(agent=self))
    with self.tracer.tracer.start_as_current_span(
        "execute_structured_output", kind=trace_api.SpanKind.CLIENT
    ) as structured_output_span:
        try:
            if not self.messages and not prompt:
                raise ValueError("No conversation history or prompt provided")

            temp_messages: Messages = self.messages + await self._convert_prompt_to_messages(prompt)

            structured_output_span.set_attributes(
                {
                    "gen_ai.system": "strands-agents",
                    "gen_ai.agent.name": self.name,
                    "gen_ai.agent.id": self.agent_id,
                    "gen_ai.operation.name": "execute_structured_output",
                }
            )
            if self.system_prompt:
                structured_output_span.add_event(
                    "gen_ai.system.message",
                    attributes={"role": "system", "content": serialize([{"text": self.system_prompt}])},
                )
            for message in temp_messages:
                structured_output_span.add_event(
                    f"gen_ai.{message['role']}.message",
                    attributes={"role": message["role"], "content": serialize(message["content"])},
                )
            events = self.model.structured_output(output_model, temp_messages, system_prompt=self.system_prompt)
            async for event in events:
                if isinstance(event, TypedEvent):
                    event.prepare(invocation_state={})
                    if event.is_callback_event:
                        self.callback_handler(**event.as_dict())

            structured_output_span.add_event(
                "gen_ai.choice", attributes={"message": serialize(event["output"].model_dump())}
            )
            return event["output"]

        finally:
            await self.hooks.invoke_callbacks_async(AfterInvocationEvent(agent=self))

BidiAgent

Agent for bidirectional streaming conversations.

Enables real-time audio and text interaction with AI models through persistent connections. Supports concurrent tool execution and interruption handling.

Source code in strands/experimental/bidi/agent/agent.py
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
class BidiAgent:
    """Agent for bidirectional streaming conversations.

    Enables real-time audio and text interaction with AI models through persistent
    connections. Supports concurrent tool execution and interruption handling.
    """

    def __init__(
        self,
        model: BidiModel | str | None = None,
        tools: list[str | AgentTool | ToolProvider] | None = None,
        system_prompt: str | None = None,
        messages: Messages | None = None,
        record_direct_tool_call: bool = True,
        load_tools_from_directory: bool = False,
        agent_id: str | None = None,
        name: str | None = None,
        description: str | None = None,
        hooks: list[HookProvider] | None = None,
        state: AgentState | dict | None = None,
        session_manager: "SessionManager | None" = None,
        tool_executor: ToolExecutor | None = None,
        **kwargs: Any,
    ):
        """Initialize bidirectional agent.

        Args:
            model: BidiModel instance, string model_id, or None for default detection.
            tools: Optional list of tools with flexible format support.
            system_prompt: Optional system prompt for conversations.
            messages: Optional conversation history to initialize with.
            record_direct_tool_call: Whether to record direct tool calls in message history.
            load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
            agent_id: Optional ID for the agent, useful for connection management and multi-agent scenarios.
            name: Name of the Agent.
            description: Description of what the Agent does.
            hooks: Optional list of hook providers to register for lifecycle events.
            state: Stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
            session_manager: Manager for handling agent sessions including conversation history and state.
                If provided, enables session-based persistence and state management.
            tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).
            **kwargs: Additional configuration for future extensibility.

        Raises:
            ValueError: If model configuration is invalid or state is invalid type.
            TypeError: If model type is unsupported.
        """
        self.model = (
            BidiNovaSonicModel()
            if not model
            else BidiNovaSonicModel(model_id=model)
            if isinstance(model, str)
            else model
        )
        self.system_prompt = system_prompt
        self.messages = messages or []

        # Agent identification
        self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
        self.name = name or _DEFAULT_AGENT_NAME
        self.description = description

        # Tool execution configuration
        self.record_direct_tool_call = record_direct_tool_call
        self.load_tools_from_directory = load_tools_from_directory

        # Initialize tool registry
        self.tool_registry = ToolRegistry()

        if tools is not None:
            self.tool_registry.process_tools(tools)

        self.tool_registry.initialize_tools(self.load_tools_from_directory)

        # Initialize tool watcher if directory loading is enabled
        if self.load_tools_from_directory:
            self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

        # Initialize agent state management
        if state is not None:
            if isinstance(state, dict):
                self.state = AgentState(state)
            elif isinstance(state, AgentState):
                self.state = state
            else:
                raise ValueError("state must be an AgentState object or a dict")
        else:
            self.state = AgentState()

        # Initialize other components
        self._tool_caller = _ToolCaller(self)

        # Initialize tool executor
        self.tool_executor = tool_executor or ConcurrentToolExecutor()

        # Initialize hooks registry
        self.hooks = HookRegistry()
        if hooks:
            for hook in hooks:
                self.hooks.add_hook(hook)

        # Initialize session management functionality
        self._session_manager = session_manager
        if self._session_manager:
            self.hooks.add_hook(self._session_manager)

        self._loop = _BidiAgentLoop(self)

        # Emit initialization event
        self.hooks.invoke_callbacks(BidiAgentInitializedEvent(agent=self))

        # TODO: Determine if full support is required
        self._interrupt_state = _InterruptState()

        # Lock to ensure that paired messages are added to history in sequence without interference
        self._message_lock = asyncio.Lock()

        self._started = False

    @property
    def tool(self) -> _ToolCaller:
        """Call tool as a function.

        Returns:
            ToolCaller for method-style tool execution.

        Example:
            ```
            agent = BidiAgent(model=model, tools=[calculator])
            agent.tool.calculator(expression="2+2")
            ```
        """
        return self._tool_caller

    @property
    def tool_names(self) -> list[str]:
        """Get a list of all registered tool names.

        Returns:
            Names of all tools available to this agent.
        """
        all_tools = self.tool_registry.get_all_tools_config()
        return list(all_tools.keys())

    async def start(self, invocation_state: dict[str, Any] | None = None) -> None:
        """Start a persistent bidirectional conversation connection.

        Initializes the streaming connection and starts background tasks for processing
        model events, tool execution, and connection management.

        Args:
            invocation_state: Optional context to pass to tools during execution.
                This allows passing custom data (user_id, session_id, database connections, etc.)
                that tools can access via their invocation_state parameter.

        Raises:
            RuntimeError:
                If agent already started.

        Example:
            ```python
            await agent.start(invocation_state={
                "user_id": "user_123",
                "session_id": "session_456",
                "database": db_connection,
            })
            ```
        """
        if self._started:
            raise RuntimeError("agent already started | call stop before starting again")

        logger.debug("agent starting")
        await self._loop.start(invocation_state)
        self._started = True

    async def send(self, input_data: BidiAgentInput | dict[str, Any]) -> None:
        """Send input to the model (text, audio, image, or event dict).

        Unified method for sending text, audio, and image input to the model during
        an active conversation session. Accepts TypedEvent instances or plain dicts
        (e.g., from WebSocket clients) which are automatically reconstructed.

        Args:
            input_data: Can be:

                - str: Text message from user
                - BidiInputEvent: TypedEvent
                - dict: Event dictionary (will be reconstructed to TypedEvent)

        Raises:
            RuntimeError: If start has not been called.
            ValueError: If invalid input type.

        Example:
            await agent.send("Hello")
            await agent.send(BidiAudioInputEvent(audio="base64...", format="pcm", ...))
            await agent.send({"type": "bidirectional_text_input", "text": "Hello", "role": "user"})
        """
        if not self._started:
            raise RuntimeError("agent not started | call start before sending")

        input_event: BidiInputEvent

        if isinstance(input_data, str):
            input_event = BidiTextInputEvent(text=input_data)

        elif isinstance(input_data, BidiInputEvent):
            input_event = input_data

        elif isinstance(input_data, dict) and "type" in input_data:
            input_type = input_data["type"]
            input_data = {key: value for key, value in input_data.items() if key != "type"}
            if input_type == "bidi_text_input":
                input_event = BidiTextInputEvent(**input_data)
            elif input_type == "bidi_audio_input":
                input_event = BidiAudioInputEvent(**input_data)
            elif input_type == "bidi_image_input":
                input_event = BidiImageInputEvent(**input_data)
            else:
                raise ValueError(f"input_type=<{input_type}> | input type not supported")

        else:
            raise ValueError("invalid input | must be str, BidiInputEvent, or event dict")

        await self._loop.send(input_event)

    async def receive(self) -> AsyncGenerator[BidiOutputEvent, None]:
        """Receive events from the model including audio, text, and tool calls.

        Yields:
            Model output events processed by background tasks including audio output,
            text responses, tool calls, and connection updates.

        Raises:
            RuntimeError: If start has not been called.
        """
        if not self._started:
            raise RuntimeError("agent not started | call start before receiving")

        async for event in self._loop.receive():
            yield event

    async def stop(self) -> None:
        """End the conversation connection and cleanup all resources.

        Terminates the streaming connection, cancels background tasks, and
        closes the connection to the model provider.
        """
        self._started = False
        await self._loop.stop()

    async def __aenter__(self, invocation_state: dict[str, Any] | None = None) -> "BidiAgent":
        """Async context manager entry point.

        Automatically starts the bidirectional connection when entering the context.

        Args:
            invocation_state: Optional context to pass to tools during execution.
                This allows passing custom data (user_id, session_id, database connections, etc.)
                that tools can access via their invocation_state parameter.

        Returns:
            Self for use in the context.
        """
        logger.debug("context_manager=<enter> | starting agent")
        await self.start(invocation_state)
        return self

    async def __aexit__(self, *_: Any) -> None:
        """Async context manager exit point.

        Automatically ends the connection and cleans up resources including
        when exiting the context, regardless of whether an exception occurred.
        """
        logger.debug("context_manager=<exit> | stopping agent")
        await self.stop()

    async def run(
        self, inputs: list[BidiInput], outputs: list[BidiOutput], invocation_state: dict[str, Any] | None = None
    ) -> None:
        """Run the agent using provided IO channels for bidirectional communication.

        Args:
            inputs: Input callables to read data from a source
            outputs: Output callables to receive events from the agent
            invocation_state: Optional context to pass to tools during execution.
                This allows passing custom data (user_id, session_id, database connections, etc.)
                that tools can access via their invocation_state parameter.

        Example:
            ```python
            # Using model defaults:
            model = BidiNovaSonicModel()
            audio_io = BidiAudioIO()
            text_io = BidiTextIO()
            agent = BidiAgent(model=model, tools=[calculator])
            await agent.run(
                inputs=[audio_io.input()],
                outputs=[audio_io.output(), text_io.output()],
                invocation_state={"user_id": "user_123"}
            )

            # Using custom audio config:
            model = BidiNovaSonicModel(
                provider_config={"audio": {"input_rate": 48000, "output_rate": 24000}}
            )
            audio_io = BidiAudioIO()
            agent = BidiAgent(model=model, tools=[calculator])
            await agent.run(
                inputs=[audio_io.input()],
                outputs=[audio_io.output()],
            )
            ```
        """

        async def run_inputs() -> None:
            async def task(input_: BidiInput) -> None:
                while True:
                    event = await input_()
                    await self.send(event)

            await asyncio.gather(*[task(input_) for input_ in inputs])

        async def run_outputs(inputs_task: asyncio.Task) -> None:
            async for event in self.receive():
                await asyncio.gather(*[output(event) for output in outputs])

            inputs_task.cancel()

        try:
            await self.start(invocation_state)

            input_starts = [input_.start for input_ in inputs if isinstance(input_, BidiInput)]
            output_starts = [output.start for output in outputs if isinstance(output, BidiOutput)]
            for start in [*input_starts, *output_starts]:
                await start(self)

            async with _TaskGroup() as task_group:
                inputs_task = task_group.create_task(run_inputs())
                task_group.create_task(run_outputs(inputs_task))

        finally:
            input_stops = [input_.stop for input_ in inputs if isinstance(input_, BidiInput)]
            output_stops = [output.stop for output in outputs if isinstance(output, BidiOutput)]

            await stop_all(*input_stops, *output_stops, self.stop)

    async def _append_messages(self, *messages: Message) -> None:
        """Append messages to history in sequence without interference.

        The message lock ensures that paired messages are added to history in sequence without interference. For
        example, tool use and tool result messages must be added adjacent to each other.

        Args:
            *messages: List of messages to add into history.
        """
        async with self._message_lock:
            for message in messages:
                self.messages.append(message)
                await self.hooks.invoke_callbacks_async(BidiMessageAddedEvent(agent=self, message=message))

tool property

Call tool as a function.

Returns:

Type Description
_ToolCaller

ToolCaller for method-style tool execution.

Example
agent = BidiAgent(model=model, tools=[calculator])
agent.tool.calculator(expression="2+2")

tool_names property

Get a list of all registered tool names.

Returns:

Type Description
list[str]

Names of all tools available to this agent.

__aenter__(invocation_state=None) async

Async context manager entry point.

Automatically starts the bidirectional connection when entering the context.

Parameters:

Name Type Description Default
invocation_state dict[str, Any] | None

Optional context to pass to tools during execution. This allows passing custom data (user_id, session_id, database connections, etc.) that tools can access via their invocation_state parameter.

None

Returns:

Type Description
BidiAgent

Self for use in the context.

Source code in strands/experimental/bidi/agent/agent.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
async def __aenter__(self, invocation_state: dict[str, Any] | None = None) -> "BidiAgent":
    """Async context manager entry point.

    Automatically starts the bidirectional connection when entering the context.

    Args:
        invocation_state: Optional context to pass to tools during execution.
            This allows passing custom data (user_id, session_id, database connections, etc.)
            that tools can access via their invocation_state parameter.

    Returns:
        Self for use in the context.
    """
    logger.debug("context_manager=<enter> | starting agent")
    await self.start(invocation_state)
    return self

__aexit__(*_) async

Async context manager exit point.

Automatically ends the connection and cleans up resources including when exiting the context, regardless of whether an exception occurred.

Source code in strands/experimental/bidi/agent/agent.py
324
325
326
327
328
329
330
331
async def __aexit__(self, *_: Any) -> None:
    """Async context manager exit point.

    Automatically ends the connection and cleans up resources including
    when exiting the context, regardless of whether an exception occurred.
    """
    logger.debug("context_manager=<exit> | stopping agent")
    await self.stop()

__init__(model=None, tools=None, system_prompt=None, messages=None, record_direct_tool_call=True, load_tools_from_directory=False, agent_id=None, name=None, description=None, hooks=None, state=None, session_manager=None, tool_executor=None, **kwargs)

Initialize bidirectional agent.

Parameters:

Name Type Description Default
model BidiModel | str | None

BidiModel instance, string model_id, or None for default detection.

None
tools list[str | AgentTool | ToolProvider] | None

Optional list of tools with flexible format support.

None
system_prompt str | None

Optional system prompt for conversations.

None
messages Messages | None

Optional conversation history to initialize with.

None
record_direct_tool_call bool

Whether to record direct tool calls in message history.

True
load_tools_from_directory bool

Whether to load and automatically reload tools in the ./tools/ directory.

False
agent_id str | None

Optional ID for the agent, useful for connection management and multi-agent scenarios.

None
name str | None

Name of the Agent.

None
description str | None

Description of what the Agent does.

None
hooks list[HookProvider] | None

Optional list of hook providers to register for lifecycle events.

None
state AgentState | dict | None

Stateful information for the agent. Can be either an AgentState object, or a json serializable dict.

None
session_manager SessionManager | None

Manager for handling agent sessions including conversation history and state. If provided, enables session-based persistence and state management.

None
tool_executor ToolExecutor | None

Definition of tool execution strategy (e.g., sequential, concurrent, etc.).

None
**kwargs Any

Additional configuration for future extensibility.

{}

Raises:

Type Description
ValueError

If model configuration is invalid or state is invalid type.

TypeError

If model type is unsupported.

Source code in strands/experimental/bidi/agent/agent.py
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
def __init__(
    self,
    model: BidiModel | str | None = None,
    tools: list[str | AgentTool | ToolProvider] | None = None,
    system_prompt: str | None = None,
    messages: Messages | None = None,
    record_direct_tool_call: bool = True,
    load_tools_from_directory: bool = False,
    agent_id: str | None = None,
    name: str | None = None,
    description: str | None = None,
    hooks: list[HookProvider] | None = None,
    state: AgentState | dict | None = None,
    session_manager: "SessionManager | None" = None,
    tool_executor: ToolExecutor | None = None,
    **kwargs: Any,
):
    """Initialize bidirectional agent.

    Args:
        model: BidiModel instance, string model_id, or None for default detection.
        tools: Optional list of tools with flexible format support.
        system_prompt: Optional system prompt for conversations.
        messages: Optional conversation history to initialize with.
        record_direct_tool_call: Whether to record direct tool calls in message history.
        load_tools_from_directory: Whether to load and automatically reload tools in the `./tools/` directory.
        agent_id: Optional ID for the agent, useful for connection management and multi-agent scenarios.
        name: Name of the Agent.
        description: Description of what the Agent does.
        hooks: Optional list of hook providers to register for lifecycle events.
        state: Stateful information for the agent. Can be either an AgentState object, or a json serializable dict.
        session_manager: Manager for handling agent sessions including conversation history and state.
            If provided, enables session-based persistence and state management.
        tool_executor: Definition of tool execution strategy (e.g., sequential, concurrent, etc.).
        **kwargs: Additional configuration for future extensibility.

    Raises:
        ValueError: If model configuration is invalid or state is invalid type.
        TypeError: If model type is unsupported.
    """
    self.model = (
        BidiNovaSonicModel()
        if not model
        else BidiNovaSonicModel(model_id=model)
        if isinstance(model, str)
        else model
    )
    self.system_prompt = system_prompt
    self.messages = messages or []

    # Agent identification
    self.agent_id = _identifier.validate(agent_id or _DEFAULT_AGENT_ID, _identifier.Identifier.AGENT)
    self.name = name or _DEFAULT_AGENT_NAME
    self.description = description

    # Tool execution configuration
    self.record_direct_tool_call = record_direct_tool_call
    self.load_tools_from_directory = load_tools_from_directory

    # Initialize tool registry
    self.tool_registry = ToolRegistry()

    if tools is not None:
        self.tool_registry.process_tools(tools)

    self.tool_registry.initialize_tools(self.load_tools_from_directory)

    # Initialize tool watcher if directory loading is enabled
    if self.load_tools_from_directory:
        self.tool_watcher = ToolWatcher(tool_registry=self.tool_registry)

    # Initialize agent state management
    if state is not None:
        if isinstance(state, dict):
            self.state = AgentState(state)
        elif isinstance(state, AgentState):
            self.state = state
        else:
            raise ValueError("state must be an AgentState object or a dict")
    else:
        self.state = AgentState()

    # Initialize other components
    self._tool_caller = _ToolCaller(self)

    # Initialize tool executor
    self.tool_executor = tool_executor or ConcurrentToolExecutor()

    # Initialize hooks registry
    self.hooks = HookRegistry()
    if hooks:
        for hook in hooks:
            self.hooks.add_hook(hook)

    # Initialize session management functionality
    self._session_manager = session_manager
    if self._session_manager:
        self.hooks.add_hook(self._session_manager)

    self._loop = _BidiAgentLoop(self)

    # Emit initialization event
    self.hooks.invoke_callbacks(BidiAgentInitializedEvent(agent=self))

    # TODO: Determine if full support is required
    self._interrupt_state = _InterruptState()

    # Lock to ensure that paired messages are added to history in sequence without interference
    self._message_lock = asyncio.Lock()

    self._started = False

receive() async

Receive events from the model including audio, text, and tool calls.

Yields:

Type Description
AsyncGenerator[BidiOutputEvent, None]

Model output events processed by background tasks including audio output,

AsyncGenerator[BidiOutputEvent, None]

text responses, tool calls, and connection updates.

Raises:

Type Description
RuntimeError

If start has not been called.

Source code in strands/experimental/bidi/agent/agent.py
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
async def receive(self) -> AsyncGenerator[BidiOutputEvent, None]:
    """Receive events from the model including audio, text, and tool calls.

    Yields:
        Model output events processed by background tasks including audio output,
        text responses, tool calls, and connection updates.

    Raises:
        RuntimeError: If start has not been called.
    """
    if not self._started:
        raise RuntimeError("agent not started | call start before receiving")

    async for event in self._loop.receive():
        yield event

run(inputs, outputs, invocation_state=None) async

Run the agent using provided IO channels for bidirectional communication.

Parameters:

Name Type Description Default
inputs list[BidiInput]

Input callables to read data from a source

required
outputs list[BidiOutput]

Output callables to receive events from the agent

required
invocation_state dict[str, Any] | None

Optional context to pass to tools during execution. This allows passing custom data (user_id, session_id, database connections, etc.) that tools can access via their invocation_state parameter.

None
Example
# Using model defaults:
model = BidiNovaSonicModel()
audio_io = BidiAudioIO()
text_io = BidiTextIO()
agent = BidiAgent(model=model, tools=[calculator])
await agent.run(
    inputs=[audio_io.input()],
    outputs=[audio_io.output(), text_io.output()],
    invocation_state={"user_id": "user_123"}
)

# Using custom audio config:
model = BidiNovaSonicModel(
    provider_config={"audio": {"input_rate": 48000, "output_rate": 24000}}
)
audio_io = BidiAudioIO()
agent = BidiAgent(model=model, tools=[calculator])
await agent.run(
    inputs=[audio_io.input()],
    outputs=[audio_io.output()],
)
Source code in strands/experimental/bidi/agent/agent.py
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
async def run(
    self, inputs: list[BidiInput], outputs: list[BidiOutput], invocation_state: dict[str, Any] | None = None
) -> None:
    """Run the agent using provided IO channels for bidirectional communication.

    Args:
        inputs: Input callables to read data from a source
        outputs: Output callables to receive events from the agent
        invocation_state: Optional context to pass to tools during execution.
            This allows passing custom data (user_id, session_id, database connections, etc.)
            that tools can access via their invocation_state parameter.

    Example:
        ```python
        # Using model defaults:
        model = BidiNovaSonicModel()
        audio_io = BidiAudioIO()
        text_io = BidiTextIO()
        agent = BidiAgent(model=model, tools=[calculator])
        await agent.run(
            inputs=[audio_io.input()],
            outputs=[audio_io.output(), text_io.output()],
            invocation_state={"user_id": "user_123"}
        )

        # Using custom audio config:
        model = BidiNovaSonicModel(
            provider_config={"audio": {"input_rate": 48000, "output_rate": 24000}}
        )
        audio_io = BidiAudioIO()
        agent = BidiAgent(model=model, tools=[calculator])
        await agent.run(
            inputs=[audio_io.input()],
            outputs=[audio_io.output()],
        )
        ```
    """

    async def run_inputs() -> None:
        async def task(input_: BidiInput) -> None:
            while True:
                event = await input_()
                await self.send(event)

        await asyncio.gather(*[task(input_) for input_ in inputs])

    async def run_outputs(inputs_task: asyncio.Task) -> None:
        async for event in self.receive():
            await asyncio.gather(*[output(event) for output in outputs])

        inputs_task.cancel()

    try:
        await self.start(invocation_state)

        input_starts = [input_.start for input_ in inputs if isinstance(input_, BidiInput)]
        output_starts = [output.start for output in outputs if isinstance(output, BidiOutput)]
        for start in [*input_starts, *output_starts]:
            await start(self)

        async with _TaskGroup() as task_group:
            inputs_task = task_group.create_task(run_inputs())
            task_group.create_task(run_outputs(inputs_task))

    finally:
        input_stops = [input_.stop for input_ in inputs if isinstance(input_, BidiInput)]
        output_stops = [output.stop for output in outputs if isinstance(output, BidiOutput)]

        await stop_all(*input_stops, *output_stops, self.stop)

send(input_data) async

Send input to the model (text, audio, image, or event dict).

Unified method for sending text, audio, and image input to the model during an active conversation session. Accepts TypedEvent instances or plain dicts (e.g., from WebSocket clients) which are automatically reconstructed.

Parameters:

Name Type Description Default
input_data BidiAgentInput | dict[str, Any]

Can be:

  • str: Text message from user
  • BidiInputEvent: TypedEvent
  • dict: Event dictionary (will be reconstructed to TypedEvent)
required

Raises:

Type Description
RuntimeError

If start has not been called.

ValueError

If invalid input type.

Example

await agent.send("Hello") await agent.send(BidiAudioInputEvent(audio="base64...", format="pcm", ...)) await agent.send({"type": "bidirectional_text_input", "text": "Hello", "role": "user"})

Source code in strands/experimental/bidi/agent/agent.py
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
async def send(self, input_data: BidiAgentInput | dict[str, Any]) -> None:
    """Send input to the model (text, audio, image, or event dict).

    Unified method for sending text, audio, and image input to the model during
    an active conversation session. Accepts TypedEvent instances or plain dicts
    (e.g., from WebSocket clients) which are automatically reconstructed.

    Args:
        input_data: Can be:

            - str: Text message from user
            - BidiInputEvent: TypedEvent
            - dict: Event dictionary (will be reconstructed to TypedEvent)

    Raises:
        RuntimeError: If start has not been called.
        ValueError: If invalid input type.

    Example:
        await agent.send("Hello")
        await agent.send(BidiAudioInputEvent(audio="base64...", format="pcm", ...))
        await agent.send({"type": "bidirectional_text_input", "text": "Hello", "role": "user"})
    """
    if not self._started:
        raise RuntimeError("agent not started | call start before sending")

    input_event: BidiInputEvent

    if isinstance(input_data, str):
        input_event = BidiTextInputEvent(text=input_data)

    elif isinstance(input_data, BidiInputEvent):
        input_event = input_data

    elif isinstance(input_data, dict) and "type" in input_data:
        input_type = input_data["type"]
        input_data = {key: value for key, value in input_data.items() if key != "type"}
        if input_type == "bidi_text_input":
            input_event = BidiTextInputEvent(**input_data)
        elif input_type == "bidi_audio_input":
            input_event = BidiAudioInputEvent(**input_data)
        elif input_type == "bidi_image_input":
            input_event = BidiImageInputEvent(**input_data)
        else:
            raise ValueError(f"input_type=<{input_type}> | input type not supported")

    else:
        raise ValueError("invalid input | must be str, BidiInputEvent, or event dict")

    await self._loop.send(input_event)

start(invocation_state=None) async

Start a persistent bidirectional conversation connection.

Initializes the streaming connection and starts background tasks for processing model events, tool execution, and connection management.

Parameters:

Name Type Description Default
invocation_state dict[str, Any] | None

Optional context to pass to tools during execution. This allows passing custom data (user_id, session_id, database connections, etc.) that tools can access via their invocation_state parameter.

None

Raises:

Type Description
RuntimeError

If agent already started.

Example
await agent.start(invocation_state={
    "user_id": "user_123",
    "session_id": "session_456",
    "database": db_connection,
})
Source code in strands/experimental/bidi/agent/agent.py
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
async def start(self, invocation_state: dict[str, Any] | None = None) -> None:
    """Start a persistent bidirectional conversation connection.

    Initializes the streaming connection and starts background tasks for processing
    model events, tool execution, and connection management.

    Args:
        invocation_state: Optional context to pass to tools during execution.
            This allows passing custom data (user_id, session_id, database connections, etc.)
            that tools can access via their invocation_state parameter.

    Raises:
        RuntimeError:
            If agent already started.

    Example:
        ```python
        await agent.start(invocation_state={
            "user_id": "user_123",
            "session_id": "session_456",
            "database": db_connection,
        })
        ```
    """
    if self._started:
        raise RuntimeError("agent already started | call stop before starting again")

    logger.debug("agent starting")
    await self._loop.start(invocation_state)
    self._started = True

stop() async

End the conversation connection and cleanup all resources.

Terminates the streaming connection, cancels background tasks, and closes the connection to the model provider.

Source code in strands/experimental/bidi/agent/agent.py
298
299
300
301
302
303
304
305
async def stop(self) -> None:
    """End the conversation connection and cleanup all resources.

    Terminates the streaming connection, cancels background tasks, and
    closes the connection to the model provider.
    """
    self._started = False
    await self._loop.stop()

Message

Bases: TypedDict

A message in a conversation with the agent.

Attributes:

Name Type Description
content List[ContentBlock]

The message content.

role Role

The role of the message sender.

Source code in strands/types/content.py
178
179
180
181
182
183
184
185
186
187
class Message(TypedDict):
    """A message in a conversation with the agent.

    Attributes:
        content: The message content.
        role: The role of the message sender.
    """

    content: List[ContentBlock]
    role: Role

MultiAgentBase

Bases: ABC

Base class for multi-agent helpers.

This class integrates with existing Strands Agent instances and provides multi-agent orchestration capabilities.

Attributes:

Name Type Description
id str

Unique MultiAgent id for session management,etc.

Source code in strands/multiagent/base.py
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
class MultiAgentBase(ABC):
    """Base class for multi-agent helpers.

    This class integrates with existing Strands Agent instances and provides
    multi-agent orchestration capabilities.

    Attributes:
        id: Unique MultiAgent id for session management,etc.
    """

    id: str

    @abstractmethod
    async def invoke_async(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> MultiAgentResult:
        """Invoke asynchronously.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Additional keyword arguments passed to underlying agents.
        """
        raise NotImplementedError("invoke_async not implemented")

    async def stream_async(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> AsyncIterator[dict[str, Any]]:
        """Stream events during multi-agent execution.

        Default implementation executes invoke_async and yields the result as a single event.
        Subclasses can override this method to provide true streaming capabilities.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Additional keyword arguments passed to underlying agents.

        Yields:
            Dictionary events containing multi-agent execution information including:
            - Multi-agent coordination events (node start/complete, handoffs)
            - Forwarded single-agent events with node context
            - Final result event
        """
        # Default implementation for backward compatibility
        # Execute invoke_async and yield the result as a single event
        result = await self.invoke_async(task, invocation_state, **kwargs)
        yield {"result": result}

    def __call__(
        self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
    ) -> MultiAgentResult:
        """Invoke synchronously.

        Args:
            task: The task to execute
            invocation_state: Additional state/context passed to underlying agents.
                Defaults to None to avoid mutable default argument issues.
            **kwargs: Additional keyword arguments passed to underlying agents.
        """
        if invocation_state is None:
            invocation_state = {}

        if kwargs:
            invocation_state.update(kwargs)
            warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)

        return run_async(lambda: self.invoke_async(task, invocation_state))

    def serialize_state(self) -> dict[str, Any]:
        """Return a JSON-serializable snapshot of the orchestrator state."""
        raise NotImplementedError

    def deserialize_state(self, payload: dict[str, Any]) -> None:
        """Restore orchestrator state from a session dict."""
        raise NotImplementedError

    def _parse_trace_attributes(
        self, attributes: Mapping[str, AttributeValue] | None = None
    ) -> dict[str, AttributeValue]:
        trace_attributes: dict[str, AttributeValue] = {}
        if attributes:
            for k, v in attributes.items():
                if isinstance(v, (str, int, float, bool)) or (
                    isinstance(v, list) and all(isinstance(x, (str, int, float, bool)) for x in v)
                ):
                    trace_attributes[k] = v
        return trace_attributes

__call__(task, invocation_state=None, **kwargs)

Invoke synchronously.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Additional keyword arguments passed to underlying agents.

{}
Source code in strands/multiagent/base.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
def __call__(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> MultiAgentResult:
    """Invoke synchronously.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Additional keyword arguments passed to underlying agents.
    """
    if invocation_state is None:
        invocation_state = {}

    if kwargs:
        invocation_state.update(kwargs)
        warnings.warn("`**kwargs` parameter is deprecating, use `invocation_state` instead.", stacklevel=2)

    return run_async(lambda: self.invoke_async(task, invocation_state))

deserialize_state(payload)

Restore orchestrator state from a session dict.

Source code in strands/multiagent/base.py
252
253
254
def deserialize_state(self, payload: dict[str, Any]) -> None:
    """Restore orchestrator state from a session dict."""
    raise NotImplementedError

invoke_async(task, invocation_state=None, **kwargs) abstractmethod async

Invoke asynchronously.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Additional keyword arguments passed to underlying agents.

{}
Source code in strands/multiagent/base.py
189
190
191
192
193
194
195
196
197
198
199
200
201
@abstractmethod
async def invoke_async(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> MultiAgentResult:
    """Invoke asynchronously.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Additional keyword arguments passed to underlying agents.
    """
    raise NotImplementedError("invoke_async not implemented")

serialize_state()

Return a JSON-serializable snapshot of the orchestrator state.

Source code in strands/multiagent/base.py
248
249
250
def serialize_state(self) -> dict[str, Any]:
    """Return a JSON-serializable snapshot of the orchestrator state."""
    raise NotImplementedError

stream_async(task, invocation_state=None, **kwargs) async

Stream events during multi-agent execution.

Default implementation executes invoke_async and yields the result as a single event. Subclasses can override this method to provide true streaming capabilities.

Parameters:

Name Type Description Default
task MultiAgentInput

The task to execute

required
invocation_state dict[str, Any] | None

Additional state/context passed to underlying agents. Defaults to None to avoid mutable default argument issues.

None
**kwargs Any

Additional keyword arguments passed to underlying agents.

{}

Yields:

Type Description
AsyncIterator[dict[str, Any]]

Dictionary events containing multi-agent execution information including:

AsyncIterator[dict[str, Any]]
  • Multi-agent coordination events (node start/complete, handoffs)
AsyncIterator[dict[str, Any]]
  • Forwarded single-agent events with node context
AsyncIterator[dict[str, Any]]
  • Final result event
Source code in strands/multiagent/base.py
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
async def stream_async(
    self, task: MultiAgentInput, invocation_state: dict[str, Any] | None = None, **kwargs: Any
) -> AsyncIterator[dict[str, Any]]:
    """Stream events during multi-agent execution.

    Default implementation executes invoke_async and yields the result as a single event.
    Subclasses can override this method to provide true streaming capabilities.

    Args:
        task: The task to execute
        invocation_state: Additional state/context passed to underlying agents.
            Defaults to None to avoid mutable default argument issues.
        **kwargs: Additional keyword arguments passed to underlying agents.

    Yields:
        Dictionary events containing multi-agent execution information including:
        - Multi-agent coordination events (node start/complete, handoffs)
        - Forwarded single-agent events with node context
        - Final result event
    """
    # Default implementation for backward compatibility
    # Execute invoke_async and yield the result as a single event
    result = await self.invoke_async(task, invocation_state, **kwargs)
    yield {"result": result}

RepositorySessionManager

Bases: SessionManager

Session manager for persisting agents in a SessionRepository.

Source code in strands/session/repository_session_manager.py
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
class RepositorySessionManager(SessionManager):
    """Session manager for persisting agents in a SessionRepository."""

    def __init__(
        self,
        session_id: str,
        session_repository: SessionRepository,
        **kwargs: Any,
    ):
        """Initialize the RepositorySessionManager.

        If no session with the specified session_id exists yet, it will be created
        in the session_repository.

        Args:
            session_id: ID to use for the session. A new session with this id will be created if it does
                not exist in the repository yet
            session_repository: Underlying session repository to use to store the sessions state.
            **kwargs: Additional keyword arguments for future extensibility.

        """
        self.session_repository = session_repository
        self.session_id = session_id
        session = session_repository.read_session(session_id)
        # Create a session if it does not exist yet
        if session is None:
            logger.debug("session_id=<%s> | session not found, creating new session", self.session_id)
            session = Session(session_id=session_id, session_type=SessionType.AGENT)
            session_repository.create_session(session)

        self.session = session

        # Keep track of the latest message of each agent in case we need to redact it.
        self._latest_agent_message: dict[str, Optional[SessionMessage]] = {}

    def append_message(self, message: Message, agent: "Agent", **kwargs: Any) -> None:
        """Append a message to the agent's session.

        Args:
            message: Message to add to the agent in the session
            agent: Agent to append the message to
            **kwargs: Additional keyword arguments for future extensibility.
        """
        # Calculate the next index (0 if this is the first message, otherwise increment the previous index)
        latest_agent_message = self._latest_agent_message[agent.agent_id]
        if latest_agent_message:
            next_index = latest_agent_message.message_id + 1
        else:
            next_index = 0

        session_message = SessionMessage.from_message(message, next_index)
        self._latest_agent_message[agent.agent_id] = session_message
        self.session_repository.create_message(self.session_id, agent.agent_id, session_message)

    def redact_latest_message(self, redact_message: Message, agent: "Agent", **kwargs: Any) -> None:
        """Redact the latest message appended to the session.

        Args:
            redact_message: New message to use that contains the redact content
            agent: Agent to apply the message redaction to
            **kwargs: Additional keyword arguments for future extensibility.
        """
        latest_agent_message = self._latest_agent_message[agent.agent_id]
        if latest_agent_message is None:
            raise SessionException("No message to redact.")
        latest_agent_message.redact_message = redact_message
        return self.session_repository.update_message(self.session_id, agent.agent_id, latest_agent_message)

    def sync_agent(self, agent: "Agent", **kwargs: Any) -> None:
        """Serialize and update the agent into the session repository.

        Args:
            agent: Agent to sync to the session.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        self.session_repository.update_agent(
            self.session_id,
            SessionAgent.from_agent(agent),
        )

    def initialize(self, agent: "Agent", **kwargs: Any) -> None:
        """Initialize an agent with a session.

        Args:
            agent: Agent to initialize from the session
            **kwargs: Additional keyword arguments for future extensibility.
        """
        if agent.agent_id in self._latest_agent_message:
            raise SessionException("The `agent_id` of an agent must be unique in a session.")
        self._latest_agent_message[agent.agent_id] = None

        session_agent = self.session_repository.read_agent(self.session_id, agent.agent_id)

        if session_agent is None:
            logger.debug(
                "agent_id=<%s> | session_id=<%s> | creating agent",
                agent.agent_id,
                self.session_id,
            )

            session_agent = SessionAgent.from_agent(agent)
            self.session_repository.create_agent(self.session_id, session_agent)
            # Initialize messages with sequential indices
            session_message = None
            for i, message in enumerate(agent.messages):
                session_message = SessionMessage.from_message(message, i)
                self.session_repository.create_message(self.session_id, agent.agent_id, session_message)
            self._latest_agent_message[agent.agent_id] = session_message
        else:
            logger.debug(
                "agent_id=<%s> | session_id=<%s> | restoring agent",
                agent.agent_id,
                self.session_id,
            )
            agent.state = AgentState(session_agent.state)

            session_agent.initialize_internal_state(agent)

            # Restore the conversation manager to its previous state, and get the optional prepend messages
            prepend_messages = agent.conversation_manager.restore_from_session(session_agent.conversation_manager_state)

            if prepend_messages is None:
                prepend_messages = []

            # List the messages currently in the session, using an offset of the messages previously removed
            # by the conversation manager.
            session_messages = self.session_repository.list_messages(
                session_id=self.session_id,
                agent_id=agent.agent_id,
                offset=agent.conversation_manager.removed_message_count,
            )
            if len(session_messages) > 0:
                self._latest_agent_message[agent.agent_id] = session_messages[-1]

            # Restore the agents messages array including the optional prepend messages
            agent.messages = prepend_messages + [session_message.to_message() for session_message in session_messages]

            # Fix broken session histories: https://github.com/strands-agents/sdk-python/issues/859
            agent.messages = self._fix_broken_tool_use(agent.messages)

    def _fix_broken_tool_use(self, messages: list[Message]) -> list[Message]:
        """Fix broken tool use/result pairs in message history.

        This method handles two issues:
        1. Orphaned toolUse messages without corresponding toolResult.
           Before 1.15.0, strands had a bug where they persisted sessions with a potentially broken messages array.
           This method retroactively fixes that issue by adding a tool_result outside of session management.
           After 1.15.0, this bug is no longer present.
        2. Orphaned toolResult messages without corresponding toolUse (e.g., when pagination truncates messages)

        Args:
            messages: The list of messages to fix
            agent_id: The agent ID for fetching previous messages
            removed_message_count: Number of messages removed by the conversation manager

        Returns:
            Fixed list of messages with proper tool use/result pairs
        """
        # First, check if the oldest message has orphaned toolResult (no preceding toolUse) and remove it.
        if messages:
            first_message = messages[0]
            if first_message["role"] == "user" and any("toolResult" in content for content in first_message["content"]):
                logger.warning(
                    "Session message history starts with orphaned toolResult with no preceding toolUse. "
                    "This typically happens when messages are truncated due to pagination limits. "
                    "Removing orphaned toolResult message to maintain valid conversation structure."
                )
                messages.pop(0)

        # Then check for orphaned toolUse messages
        for index, message in enumerate(messages):
            # Check all but the latest message in the messages array
            # The latest message being orphaned is handled in the agent class
            if index + 1 < len(messages):
                if any("toolUse" in content for content in message["content"]):
                    tool_use_ids = [
                        content["toolUse"]["toolUseId"] for content in message["content"] if "toolUse" in content
                    ]

                    # Check if there are more messages after the current toolUse message
                    tool_result_ids = [
                        content["toolResult"]["toolUseId"]
                        for content in messages[index + 1]["content"]
                        if "toolResult" in content
                    ]

                    missing_tool_use_ids = list(set(tool_use_ids) - set(tool_result_ids))
                    # If there are missing tool use ids, that means the messages history is broken
                    if missing_tool_use_ids:
                        logger.warning(
                            "Session message history has an orphaned toolUse with no toolResult. "
                            "Adding toolResult content blocks to create valid conversation."
                        )
                        # Create the missing toolResult content blocks
                        missing_content_blocks = generate_missing_tool_result_content(missing_tool_use_ids)

                        if tool_result_ids:
                            # If there were any toolResult ids, that means only some of the content blocks are missing
                            messages[index + 1]["content"].extend(missing_content_blocks)
                        else:
                            # The message following the toolUse was not a toolResult, so lets insert it
                            messages.insert(index + 1, {"role": "user", "content": missing_content_blocks})
        return messages

    def sync_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
        """Serialize and update the multi-agent state into the session repository.

        Args:
            source: Multi-agent source object to sync to the session.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        self.session_repository.update_multi_agent(self.session_id, source)

    def initialize_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
        """Initialize multi-agent state from the session repository.

        Args:
            source: Multi-agent source object to restore state into
            **kwargs: Additional keyword arguments for future extensibility.
        """
        state = self.session_repository.read_multi_agent(self.session_id, source.id, **kwargs)
        if state is None:
            self.session_repository.create_multi_agent(self.session_id, source, **kwargs)
        else:
            logger.debug("session_id=<%s> | restoring multi-agent state", self.session_id)
            source.deserialize_state(state)

    def initialize_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
        """Initialize a bidirectional agent with a session.

        Args:
            agent: BidiAgent to initialize from the session
            **kwargs: Additional keyword arguments for future extensibility.
        """
        if agent.agent_id in self._latest_agent_message:
            raise SessionException("The `agent_id` of an agent must be unique in a session.")
        self._latest_agent_message[agent.agent_id] = None

        session_agent = self.session_repository.read_agent(self.session_id, agent.agent_id)

        if session_agent is None:
            logger.debug(
                "agent_id=<%s> | session_id=<%s> | creating bidi agent",
                agent.agent_id,
                self.session_id,
            )

            session_agent = SessionAgent.from_bidi_agent(agent)
            self.session_repository.create_agent(self.session_id, session_agent)
            # Initialize messages with sequential indices
            session_message = None
            for i, message in enumerate(agent.messages):
                session_message = SessionMessage.from_message(message, i)
                self.session_repository.create_message(self.session_id, agent.agent_id, session_message)
            self._latest_agent_message[agent.agent_id] = session_message
        else:
            logger.debug(
                "agent_id=<%s> | session_id=<%s> | restoring bidi agent",
                agent.agent_id,
                self.session_id,
            )
            agent.state = AgentState(session_agent.state)

            session_agent.initialize_bidi_internal_state(agent)

            # BidiAgent has no conversation_manager, so no prepend_messages or removed_message_count
            session_messages = self.session_repository.list_messages(
                session_id=self.session_id,
                agent_id=agent.agent_id,
                offset=0,
            )
            if len(session_messages) > 0:
                self._latest_agent_message[agent.agent_id] = session_messages[-1]

            # Restore the agents messages array
            agent.messages = [session_message.to_message() for session_message in session_messages]

            # Fix broken session histories: https://github.com/strands-agents/sdk-python/issues/859
            agent.messages = self._fix_broken_tool_use(agent.messages)

    def append_bidi_message(self, message: Message, agent: "BidiAgent", **kwargs: Any) -> None:
        """Append a message to the bidirectional agent's session.

        Args:
            message: Message to add to the agent in the session
            agent: BidiAgent to append the message to
            **kwargs: Additional keyword arguments for future extensibility.
        """
        # Calculate the next index (0 if this is the first message, otherwise increment the previous index)
        latest_agent_message = self._latest_agent_message[agent.agent_id]
        if latest_agent_message:
            next_index = latest_agent_message.message_id + 1
        else:
            next_index = 0

        session_message = SessionMessage.from_message(message, next_index)
        self._latest_agent_message[agent.agent_id] = session_message
        self.session_repository.create_message(self.session_id, agent.agent_id, session_message)

    def sync_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
        """Serialize and update the bidirectional agent into the session repository.

        Args:
            agent: BidiAgent to sync to the session.
            **kwargs: Additional keyword arguments for future extensibility.
        """
        self.session_repository.update_agent(
            self.session_id,
            SessionAgent.from_bidi_agent(agent),
        )

__init__(session_id, session_repository, **kwargs)

Initialize the RepositorySessionManager.

If no session with the specified session_id exists yet, it will be created in the session_repository.

Parameters:

Name Type Description Default
session_id str

ID to use for the session. A new session with this id will be created if it does not exist in the repository yet

required
session_repository SessionRepository

Underlying session repository to use to store the sessions state.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def __init__(
    self,
    session_id: str,
    session_repository: SessionRepository,
    **kwargs: Any,
):
    """Initialize the RepositorySessionManager.

    If no session with the specified session_id exists yet, it will be created
    in the session_repository.

    Args:
        session_id: ID to use for the session. A new session with this id will be created if it does
            not exist in the repository yet
        session_repository: Underlying session repository to use to store the sessions state.
        **kwargs: Additional keyword arguments for future extensibility.

    """
    self.session_repository = session_repository
    self.session_id = session_id
    session = session_repository.read_session(session_id)
    # Create a session if it does not exist yet
    if session is None:
        logger.debug("session_id=<%s> | session not found, creating new session", self.session_id)
        session = Session(session_id=session_id, session_type=SessionType.AGENT)
        session_repository.create_session(session)

    self.session = session

    # Keep track of the latest message of each agent in case we need to redact it.
    self._latest_agent_message: dict[str, Optional[SessionMessage]] = {}

append_bidi_message(message, agent, **kwargs)

Append a message to the bidirectional agent's session.

Parameters:

Name Type Description Default
message Message

Message to add to the agent in the session

required
agent BidiAgent

BidiAgent to append the message to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
def append_bidi_message(self, message: Message, agent: "BidiAgent", **kwargs: Any) -> None:
    """Append a message to the bidirectional agent's session.

    Args:
        message: Message to add to the agent in the session
        agent: BidiAgent to append the message to
        **kwargs: Additional keyword arguments for future extensibility.
    """
    # Calculate the next index (0 if this is the first message, otherwise increment the previous index)
    latest_agent_message = self._latest_agent_message[agent.agent_id]
    if latest_agent_message:
        next_index = latest_agent_message.message_id + 1
    else:
        next_index = 0

    session_message = SessionMessage.from_message(message, next_index)
    self._latest_agent_message[agent.agent_id] = session_message
    self.session_repository.create_message(self.session_id, agent.agent_id, session_message)

append_message(message, agent, **kwargs)

Append a message to the agent's session.

Parameters:

Name Type Description Default
message Message

Message to add to the agent in the session

required
agent Agent

Agent to append the message to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
def append_message(self, message: Message, agent: "Agent", **kwargs: Any) -> None:
    """Append a message to the agent's session.

    Args:
        message: Message to add to the agent in the session
        agent: Agent to append the message to
        **kwargs: Additional keyword arguments for future extensibility.
    """
    # Calculate the next index (0 if this is the first message, otherwise increment the previous index)
    latest_agent_message = self._latest_agent_message[agent.agent_id]
    if latest_agent_message:
        next_index = latest_agent_message.message_id + 1
    else:
        next_index = 0

    session_message = SessionMessage.from_message(message, next_index)
    self._latest_agent_message[agent.agent_id] = session_message
    self.session_repository.create_message(self.session_id, agent.agent_id, session_message)

initialize(agent, **kwargs)

Initialize an agent with a session.

Parameters:

Name Type Description Default
agent Agent

Agent to initialize from the session

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def initialize(self, agent: "Agent", **kwargs: Any) -> None:
    """Initialize an agent with a session.

    Args:
        agent: Agent to initialize from the session
        **kwargs: Additional keyword arguments for future extensibility.
    """
    if agent.agent_id in self._latest_agent_message:
        raise SessionException("The `agent_id` of an agent must be unique in a session.")
    self._latest_agent_message[agent.agent_id] = None

    session_agent = self.session_repository.read_agent(self.session_id, agent.agent_id)

    if session_agent is None:
        logger.debug(
            "agent_id=<%s> | session_id=<%s> | creating agent",
            agent.agent_id,
            self.session_id,
        )

        session_agent = SessionAgent.from_agent(agent)
        self.session_repository.create_agent(self.session_id, session_agent)
        # Initialize messages with sequential indices
        session_message = None
        for i, message in enumerate(agent.messages):
            session_message = SessionMessage.from_message(message, i)
            self.session_repository.create_message(self.session_id, agent.agent_id, session_message)
        self._latest_agent_message[agent.agent_id] = session_message
    else:
        logger.debug(
            "agent_id=<%s> | session_id=<%s> | restoring agent",
            agent.agent_id,
            self.session_id,
        )
        agent.state = AgentState(session_agent.state)

        session_agent.initialize_internal_state(agent)

        # Restore the conversation manager to its previous state, and get the optional prepend messages
        prepend_messages = agent.conversation_manager.restore_from_session(session_agent.conversation_manager_state)

        if prepend_messages is None:
            prepend_messages = []

        # List the messages currently in the session, using an offset of the messages previously removed
        # by the conversation manager.
        session_messages = self.session_repository.list_messages(
            session_id=self.session_id,
            agent_id=agent.agent_id,
            offset=agent.conversation_manager.removed_message_count,
        )
        if len(session_messages) > 0:
            self._latest_agent_message[agent.agent_id] = session_messages[-1]

        # Restore the agents messages array including the optional prepend messages
        agent.messages = prepend_messages + [session_message.to_message() for session_message in session_messages]

        # Fix broken session histories: https://github.com/strands-agents/sdk-python/issues/859
        agent.messages = self._fix_broken_tool_use(agent.messages)

initialize_bidi_agent(agent, **kwargs)

Initialize a bidirectional agent with a session.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent to initialize from the session

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
def initialize_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
    """Initialize a bidirectional agent with a session.

    Args:
        agent: BidiAgent to initialize from the session
        **kwargs: Additional keyword arguments for future extensibility.
    """
    if agent.agent_id in self._latest_agent_message:
        raise SessionException("The `agent_id` of an agent must be unique in a session.")
    self._latest_agent_message[agent.agent_id] = None

    session_agent = self.session_repository.read_agent(self.session_id, agent.agent_id)

    if session_agent is None:
        logger.debug(
            "agent_id=<%s> | session_id=<%s> | creating bidi agent",
            agent.agent_id,
            self.session_id,
        )

        session_agent = SessionAgent.from_bidi_agent(agent)
        self.session_repository.create_agent(self.session_id, session_agent)
        # Initialize messages with sequential indices
        session_message = None
        for i, message in enumerate(agent.messages):
            session_message = SessionMessage.from_message(message, i)
            self.session_repository.create_message(self.session_id, agent.agent_id, session_message)
        self._latest_agent_message[agent.agent_id] = session_message
    else:
        logger.debug(
            "agent_id=<%s> | session_id=<%s> | restoring bidi agent",
            agent.agent_id,
            self.session_id,
        )
        agent.state = AgentState(session_agent.state)

        session_agent.initialize_bidi_internal_state(agent)

        # BidiAgent has no conversation_manager, so no prepend_messages or removed_message_count
        session_messages = self.session_repository.list_messages(
            session_id=self.session_id,
            agent_id=agent.agent_id,
            offset=0,
        )
        if len(session_messages) > 0:
            self._latest_agent_message[agent.agent_id] = session_messages[-1]

        # Restore the agents messages array
        agent.messages = [session_message.to_message() for session_message in session_messages]

        # Fix broken session histories: https://github.com/strands-agents/sdk-python/issues/859
        agent.messages = self._fix_broken_tool_use(agent.messages)

initialize_multi_agent(source, **kwargs)

Initialize multi-agent state from the session repository.

Parameters:

Name Type Description Default
source MultiAgentBase

Multi-agent source object to restore state into

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
240
241
242
243
244
245
246
247
248
249
250
251
252
def initialize_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
    """Initialize multi-agent state from the session repository.

    Args:
        source: Multi-agent source object to restore state into
        **kwargs: Additional keyword arguments for future extensibility.
    """
    state = self.session_repository.read_multi_agent(self.session_id, source.id, **kwargs)
    if state is None:
        self.session_repository.create_multi_agent(self.session_id, source, **kwargs)
    else:
        logger.debug("session_id=<%s> | restoring multi-agent state", self.session_id)
        source.deserialize_state(state)

redact_latest_message(redact_message, agent, **kwargs)

Redact the latest message appended to the session.

Parameters:

Name Type Description Default
redact_message Message

New message to use that contains the redact content

required
agent Agent

Agent to apply the message redaction to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
81
82
83
84
85
86
87
88
89
90
91
92
93
def redact_latest_message(self, redact_message: Message, agent: "Agent", **kwargs: Any) -> None:
    """Redact the latest message appended to the session.

    Args:
        redact_message: New message to use that contains the redact content
        agent: Agent to apply the message redaction to
        **kwargs: Additional keyword arguments for future extensibility.
    """
    latest_agent_message = self._latest_agent_message[agent.agent_id]
    if latest_agent_message is None:
        raise SessionException("No message to redact.")
    latest_agent_message.redact_message = redact_message
    return self.session_repository.update_message(self.session_id, agent.agent_id, latest_agent_message)

sync_agent(agent, **kwargs)

Serialize and update the agent into the session repository.

Parameters:

Name Type Description Default
agent Agent

Agent to sync to the session.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
 95
 96
 97
 98
 99
100
101
102
103
104
105
def sync_agent(self, agent: "Agent", **kwargs: Any) -> None:
    """Serialize and update the agent into the session repository.

    Args:
        agent: Agent to sync to the session.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    self.session_repository.update_agent(
        self.session_id,
        SessionAgent.from_agent(agent),
    )

sync_bidi_agent(agent, **kwargs)

Serialize and update the bidirectional agent into the session repository.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent to sync to the session.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
326
327
328
329
330
331
332
333
334
335
336
def sync_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
    """Serialize and update the bidirectional agent into the session repository.

    Args:
        agent: BidiAgent to sync to the session.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    self.session_repository.update_agent(
        self.session_id,
        SessionAgent.from_bidi_agent(agent),
    )

sync_multi_agent(source, **kwargs)

Serialize and update the multi-agent state into the session repository.

Parameters:

Name Type Description Default
source MultiAgentBase

Multi-agent source object to sync to the session.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/repository_session_manager.py
231
232
233
234
235
236
237
238
def sync_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
    """Serialize and update the multi-agent state into the session repository.

    Args:
        source: Multi-agent source object to sync to the session.
        **kwargs: Additional keyword arguments for future extensibility.
    """
    self.session_repository.update_multi_agent(self.session_id, source)

Session dataclass

Session data model.

Source code in strands/types/session.py
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
@dataclass
class Session:
    """Session data model."""

    session_id: str
    session_type: SessionType
    created_at: str = field(default_factory=lambda: datetime.now(timezone.utc).isoformat())
    updated_at: str = field(default_factory=lambda: datetime.now(timezone.utc).isoformat())

    @classmethod
    def from_dict(cls, env: dict[str, Any]) -> "Session":
        """Initialize a Session from a dictionary, ignoring keys that are not class parameters."""
        return cls(**{k: v for k, v in env.items() if k in inspect.signature(cls).parameters})

    def to_dict(self) -> dict[str, Any]:
        """Convert the Session to a dictionary representation."""
        return asdict(self)

from_dict(env) classmethod

Initialize a Session from a dictionary, ignoring keys that are not class parameters.

Source code in strands/types/session.py
200
201
202
203
@classmethod
def from_dict(cls, env: dict[str, Any]) -> "Session":
    """Initialize a Session from a dictionary, ignoring keys that are not class parameters."""
    return cls(**{k: v for k, v in env.items() if k in inspect.signature(cls).parameters})

to_dict()

Convert the Session to a dictionary representation.

Source code in strands/types/session.py
205
206
207
def to_dict(self) -> dict[str, Any]:
    """Convert the Session to a dictionary representation."""
    return asdict(self)

SessionAgent dataclass

Agent that belongs to a Session.

Attributes:

Name Type Description
agent_id str

Unique id for the agent.

state dict[str, Any]

User managed state.

conversation_manager_state dict[str, Any]

State for conversation management.

created_at str

Created at time.

updated_at str

Updated at time.

Source code in strands/types/session.py
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
@dataclass
class SessionAgent:
    """Agent that belongs to a Session.

    Attributes:
        agent_id: Unique id for the agent.
        state: User managed state.
        conversation_manager_state: State for conversation management.
        created_at: Created at time.
        updated_at: Updated at time.
    """

    agent_id: str
    state: dict[str, Any]
    conversation_manager_state: dict[str, Any]
    _internal_state: dict[str, Any] = field(default_factory=dict)  # Strands managed state
    created_at: str = field(default_factory=lambda: datetime.now(timezone.utc).isoformat())
    updated_at: str = field(default_factory=lambda: datetime.now(timezone.utc).isoformat())

    @classmethod
    def from_agent(cls, agent: "Agent") -> "SessionAgent":
        """Convert an Agent to a SessionAgent."""
        if agent.agent_id is None:
            raise ValueError("agent_id needs to be defined.")
        return cls(
            agent_id=agent.agent_id,
            conversation_manager_state=agent.conversation_manager.get_state(),
            state=agent.state.get(),
            _internal_state={
                "interrupt_state": agent._interrupt_state.to_dict(),
            },
        )

    @classmethod
    def from_bidi_agent(cls, agent: "BidiAgent") -> "SessionAgent":
        """Convert a BidiAgent to a SessionAgent.

        Args:
            agent: BidiAgent to convert

        Returns:
            SessionAgent with empty conversation_manager_state (BidiAgent doesn't use conversation manager)
        """
        if agent.agent_id is None:
            raise ValueError("agent_id needs to be defined.")

        # BidiAgent doesn't have _interrupt_state yet, so we use empty dict for internal state
        internal_state = {}
        if hasattr(agent, "_interrupt_state"):
            internal_state["interrupt_state"] = agent._interrupt_state.to_dict()

        return cls(
            agent_id=agent.agent_id,
            conversation_manager_state={},  # BidiAgent has no conversation_manager
            state=agent.state.get(),
            _internal_state=internal_state,
        )

    @classmethod
    def from_dict(cls, env: dict[str, Any]) -> "SessionAgent":
        """Initialize a SessionAgent from a dictionary, ignoring keys that are not class parameters."""
        return cls(**{k: v for k, v in env.items() if k in inspect.signature(cls).parameters})

    def to_dict(self) -> dict[str, Any]:
        """Convert the SessionAgent to a dictionary representation."""
        return asdict(self)

    def initialize_internal_state(self, agent: "Agent") -> None:
        """Initialize internal state of agent."""
        if "interrupt_state" in self._internal_state:
            agent._interrupt_state = _InterruptState.from_dict(self._internal_state["interrupt_state"])

    def initialize_bidi_internal_state(self, agent: "BidiAgent") -> None:
        """Initialize internal state of BidiAgent.

        Args:
            agent: BidiAgent to initialize internal state for
        """
        # BidiAgent doesn't have _interrupt_state yet, so we skip interrupt state restoration
        # When BidiAgent adds _interrupt_state support, this will automatically work
        if "interrupt_state" in self._internal_state and hasattr(agent, "_interrupt_state"):
            agent._interrupt_state = _InterruptState.from_dict(self._internal_state["interrupt_state"])

from_agent(agent) classmethod

Convert an Agent to a SessionAgent.

Source code in strands/types/session.py
126
127
128
129
130
131
132
133
134
135
136
137
138
@classmethod
def from_agent(cls, agent: "Agent") -> "SessionAgent":
    """Convert an Agent to a SessionAgent."""
    if agent.agent_id is None:
        raise ValueError("agent_id needs to be defined.")
    return cls(
        agent_id=agent.agent_id,
        conversation_manager_state=agent.conversation_manager.get_state(),
        state=agent.state.get(),
        _internal_state={
            "interrupt_state": agent._interrupt_state.to_dict(),
        },
    )

from_bidi_agent(agent) classmethod

Convert a BidiAgent to a SessionAgent.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent to convert

required

Returns:

Type Description
SessionAgent

SessionAgent with empty conversation_manager_state (BidiAgent doesn't use conversation manager)

Source code in strands/types/session.py
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
@classmethod
def from_bidi_agent(cls, agent: "BidiAgent") -> "SessionAgent":
    """Convert a BidiAgent to a SessionAgent.

    Args:
        agent: BidiAgent to convert

    Returns:
        SessionAgent with empty conversation_manager_state (BidiAgent doesn't use conversation manager)
    """
    if agent.agent_id is None:
        raise ValueError("agent_id needs to be defined.")

    # BidiAgent doesn't have _interrupt_state yet, so we use empty dict for internal state
    internal_state = {}
    if hasattr(agent, "_interrupt_state"):
        internal_state["interrupt_state"] = agent._interrupt_state.to_dict()

    return cls(
        agent_id=agent.agent_id,
        conversation_manager_state={},  # BidiAgent has no conversation_manager
        state=agent.state.get(),
        _internal_state=internal_state,
    )

from_dict(env) classmethod

Initialize a SessionAgent from a dictionary, ignoring keys that are not class parameters.

Source code in strands/types/session.py
165
166
167
168
@classmethod
def from_dict(cls, env: dict[str, Any]) -> "SessionAgent":
    """Initialize a SessionAgent from a dictionary, ignoring keys that are not class parameters."""
    return cls(**{k: v for k, v in env.items() if k in inspect.signature(cls).parameters})

initialize_bidi_internal_state(agent)

Initialize internal state of BidiAgent.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent to initialize internal state for

required
Source code in strands/types/session.py
179
180
181
182
183
184
185
186
187
188
def initialize_bidi_internal_state(self, agent: "BidiAgent") -> None:
    """Initialize internal state of BidiAgent.

    Args:
        agent: BidiAgent to initialize internal state for
    """
    # BidiAgent doesn't have _interrupt_state yet, so we skip interrupt state restoration
    # When BidiAgent adds _interrupt_state support, this will automatically work
    if "interrupt_state" in self._internal_state and hasattr(agent, "_interrupt_state"):
        agent._interrupt_state = _InterruptState.from_dict(self._internal_state["interrupt_state"])

initialize_internal_state(agent)

Initialize internal state of agent.

Source code in strands/types/session.py
174
175
176
177
def initialize_internal_state(self, agent: "Agent") -> None:
    """Initialize internal state of agent."""
    if "interrupt_state" in self._internal_state:
        agent._interrupt_state = _InterruptState.from_dict(self._internal_state["interrupt_state"])

to_dict()

Convert the SessionAgent to a dictionary representation.

Source code in strands/types/session.py
170
171
172
def to_dict(self) -> dict[str, Any]:
    """Convert the SessionAgent to a dictionary representation."""
    return asdict(self)

SessionException

Bases: Exception

Exception raised when session operations fail.

Source code in strands/types/exceptions.py
74
75
76
77
class SessionException(Exception):
    """Exception raised when session operations fail."""

    pass

SessionManager

Bases: HookProvider, ABC

Abstract interface for managing sessions.

A session manager is in charge of persisting the conversation and state of an agent across its interaction. Changes made to the agents conversation, state, or other attributes should be persisted immediately after they are changed. The different methods introduced in this class are called at important lifecycle events for an agent, and should be persisted in the session.

Source code in strands/session/session_manager.py
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
class SessionManager(HookProvider, ABC):
    """Abstract interface for managing sessions.

    A session manager is in charge of persisting the conversation and state of an agent across its interaction.
    Changes made to the agents conversation, state, or other attributes should be persisted immediately after
    they are changed. The different methods introduced in this class are called at important lifecycle events
    for an agent, and should be persisted in the session.
    """

    def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None:
        """Register hooks for persisting the agent to the session."""
        # After the normal Agent initialization behavior, call the session initialize function to restore the agent
        registry.add_callback(AgentInitializedEvent, lambda event: self.initialize(event.agent))

        # For each message appended to the Agents messages, store that message in the session
        registry.add_callback(MessageAddedEvent, lambda event: self.append_message(event.message, event.agent))

        # Sync the agent into the session for each message in case the agent state was updated
        registry.add_callback(MessageAddedEvent, lambda event: self.sync_agent(event.agent))

        # After an agent was invoked, sync it with the session to capture any conversation manager state updates
        registry.add_callback(AfterInvocationEvent, lambda event: self.sync_agent(event.agent))

        registry.add_callback(MultiAgentInitializedEvent, lambda event: self.initialize_multi_agent(event.source))
        registry.add_callback(AfterNodeCallEvent, lambda event: self.sync_multi_agent(event.source))
        registry.add_callback(AfterMultiAgentInvocationEvent, lambda event: self.sync_multi_agent(event.source))

        # Register BidiAgent hooks
        registry.add_callback(BidiAgentInitializedEvent, lambda event: self.initialize_bidi_agent(event.agent))
        registry.add_callback(BidiMessageAddedEvent, lambda event: self.append_bidi_message(event.message, event.agent))
        registry.add_callback(BidiMessageAddedEvent, lambda event: self.sync_bidi_agent(event.agent))
        registry.add_callback(BidiAfterInvocationEvent, lambda event: self.sync_bidi_agent(event.agent))

    @abstractmethod
    def redact_latest_message(self, redact_message: Message, agent: "Agent", **kwargs: Any) -> None:
        """Redact the message most recently appended to the agent in the session.

        Args:
            redact_message: New message to use that contains the redact content
            agent: Agent to apply the message redaction to
            **kwargs: Additional keyword arguments for future extensibility.
        """

    @abstractmethod
    def append_message(self, message: Message, agent: "Agent", **kwargs: Any) -> None:
        """Append a message to the agent's session.

        Args:
            message: Message to add to the agent in the session
            agent: Agent to append the message to
            **kwargs: Additional keyword arguments for future extensibility.
        """

    @abstractmethod
    def sync_agent(self, agent: "Agent", **kwargs: Any) -> None:
        """Serialize and sync the agent with the session storage.

        Args:
            agent: Agent who should be synchronized with the session storage
            **kwargs: Additional keyword arguments for future extensibility.
        """

    @abstractmethod
    def initialize(self, agent: "Agent", **kwargs: Any) -> None:
        """Initialize an agent with a session.

        Args:
            agent: Agent to initialize
            **kwargs: Additional keyword arguments for future extensibility.
        """

    def sync_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
        """Serialize and sync multi-agent with the session storage.

        Args:
            source: Multi-agent source object to persist
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support multi-agent persistence "
            "(sync_multi_agent). Provide an implementation or use a "
            "SessionManager with session_type=SessionType.MULTI_AGENT."
        )

    def initialize_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
        """Read multi-agent state from persistent storage.

        Args:
            **kwargs: Additional keyword arguments for future extensibility.
            source: Multi-agent state to initialize.

        Returns:
            Multi-agent state dictionary or empty dict if not found.

        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support multi-agent persistence "
            "(initialize_multi_agent). Provide an implementation or use a "
            "SessionManager with session_type=SessionType.MULTI_AGENT."
        )

    def initialize_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
        """Initialize a bidirectional agent with a session.

        Args:
            agent: BidiAgent to initialize
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support bidirectional agent persistence "
            "(initialize_bidi_agent). Provide an implementation or use a "
            "SessionManager with bidirectional agent support."
        )

    def append_bidi_message(self, message: Message, agent: "BidiAgent", **kwargs: Any) -> None:
        """Append a message to the bidirectional agent's session.

        Args:
            message: Message to add to the agent in the session
            agent: BidiAgent to append the message to
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support bidirectional agent persistence "
            "(append_bidi_message). Provide an implementation or use a "
            "SessionManager with bidirectional agent support."
        )

    def sync_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
        """Serialize and sync the bidirectional agent with the session storage.

        Args:
            agent: BidiAgent who should be synchronized with the session storage
            **kwargs: Additional keyword arguments for future extensibility.
        """
        raise NotImplementedError(
            f"{self.__class__.__name__} does not support bidirectional agent persistence "
            "(sync_bidi_agent). Provide an implementation or use a "
            "SessionManager with bidirectional agent support."
        )

append_bidi_message(message, agent, **kwargs)

Append a message to the bidirectional agent's session.

Parameters:

Name Type Description Default
message Message

Message to add to the agent in the session

required
agent BidiAgent

BidiAgent to append the message to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
143
144
145
146
147
148
149
150
151
152
153
154
155
def append_bidi_message(self, message: Message, agent: "BidiAgent", **kwargs: Any) -> None:
    """Append a message to the bidirectional agent's session.

    Args:
        message: Message to add to the agent in the session
        agent: BidiAgent to append the message to
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support bidirectional agent persistence "
        "(append_bidi_message). Provide an implementation or use a "
        "SessionManager with bidirectional agent support."
    )

append_message(message, agent, **kwargs) abstractmethod

Append a message to the agent's session.

Parameters:

Name Type Description Default
message Message

Message to add to the agent in the session

required
agent Agent

Agent to append the message to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
72
73
74
75
76
77
78
79
80
@abstractmethod
def append_message(self, message: Message, agent: "Agent", **kwargs: Any) -> None:
    """Append a message to the agent's session.

    Args:
        message: Message to add to the agent in the session
        agent: Agent to append the message to
        **kwargs: Additional keyword arguments for future extensibility.
    """

initialize(agent, **kwargs) abstractmethod

Initialize an agent with a session.

Parameters:

Name Type Description Default
agent Agent

Agent to initialize

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
91
92
93
94
95
96
97
98
@abstractmethod
def initialize(self, agent: "Agent", **kwargs: Any) -> None:
    """Initialize an agent with a session.

    Args:
        agent: Agent to initialize
        **kwargs: Additional keyword arguments for future extensibility.
    """

initialize_bidi_agent(agent, **kwargs)

Initialize a bidirectional agent with a session.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent to initialize

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
130
131
132
133
134
135
136
137
138
139
140
141
def initialize_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
    """Initialize a bidirectional agent with a session.

    Args:
        agent: BidiAgent to initialize
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support bidirectional agent persistence "
        "(initialize_bidi_agent). Provide an implementation or use a "
        "SessionManager with bidirectional agent support."
    )

initialize_multi_agent(source, **kwargs)

Read multi-agent state from persistent storage.

Parameters:

Name Type Description Default
**kwargs Any

Additional keyword arguments for future extensibility.

{}
source MultiAgentBase

Multi-agent state to initialize.

required

Returns:

Type Description
None

Multi-agent state dictionary or empty dict if not found.

Source code in strands/session/session_manager.py
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
def initialize_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
    """Read multi-agent state from persistent storage.

    Args:
        **kwargs: Additional keyword arguments for future extensibility.
        source: Multi-agent state to initialize.

    Returns:
        Multi-agent state dictionary or empty dict if not found.

    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support multi-agent persistence "
        "(initialize_multi_agent). Provide an implementation or use a "
        "SessionManager with session_type=SessionType.MULTI_AGENT."
    )

redact_latest_message(redact_message, agent, **kwargs) abstractmethod

Redact the message most recently appended to the agent in the session.

Parameters:

Name Type Description Default
redact_message Message

New message to use that contains the redact content

required
agent Agent

Agent to apply the message redaction to

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
62
63
64
65
66
67
68
69
70
@abstractmethod
def redact_latest_message(self, redact_message: Message, agent: "Agent", **kwargs: Any) -> None:
    """Redact the message most recently appended to the agent in the session.

    Args:
        redact_message: New message to use that contains the redact content
        agent: Agent to apply the message redaction to
        **kwargs: Additional keyword arguments for future extensibility.
    """

register_hooks(registry, **kwargs)

Register hooks for persisting the agent to the session.

Source code in strands/session/session_manager.py
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
def register_hooks(self, registry: HookRegistry, **kwargs: Any) -> None:
    """Register hooks for persisting the agent to the session."""
    # After the normal Agent initialization behavior, call the session initialize function to restore the agent
    registry.add_callback(AgentInitializedEvent, lambda event: self.initialize(event.agent))

    # For each message appended to the Agents messages, store that message in the session
    registry.add_callback(MessageAddedEvent, lambda event: self.append_message(event.message, event.agent))

    # Sync the agent into the session for each message in case the agent state was updated
    registry.add_callback(MessageAddedEvent, lambda event: self.sync_agent(event.agent))

    # After an agent was invoked, sync it with the session to capture any conversation manager state updates
    registry.add_callback(AfterInvocationEvent, lambda event: self.sync_agent(event.agent))

    registry.add_callback(MultiAgentInitializedEvent, lambda event: self.initialize_multi_agent(event.source))
    registry.add_callback(AfterNodeCallEvent, lambda event: self.sync_multi_agent(event.source))
    registry.add_callback(AfterMultiAgentInvocationEvent, lambda event: self.sync_multi_agent(event.source))

    # Register BidiAgent hooks
    registry.add_callback(BidiAgentInitializedEvent, lambda event: self.initialize_bidi_agent(event.agent))
    registry.add_callback(BidiMessageAddedEvent, lambda event: self.append_bidi_message(event.message, event.agent))
    registry.add_callback(BidiMessageAddedEvent, lambda event: self.sync_bidi_agent(event.agent))
    registry.add_callback(BidiAfterInvocationEvent, lambda event: self.sync_bidi_agent(event.agent))

sync_agent(agent, **kwargs) abstractmethod

Serialize and sync the agent with the session storage.

Parameters:

Name Type Description Default
agent Agent

Agent who should be synchronized with the session storage

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
82
83
84
85
86
87
88
89
@abstractmethod
def sync_agent(self, agent: "Agent", **kwargs: Any) -> None:
    """Serialize and sync the agent with the session storage.

    Args:
        agent: Agent who should be synchronized with the session storage
        **kwargs: Additional keyword arguments for future extensibility.
    """

sync_bidi_agent(agent, **kwargs)

Serialize and sync the bidirectional agent with the session storage.

Parameters:

Name Type Description Default
agent BidiAgent

BidiAgent who should be synchronized with the session storage

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
157
158
159
160
161
162
163
164
165
166
167
168
def sync_bidi_agent(self, agent: "BidiAgent", **kwargs: Any) -> None:
    """Serialize and sync the bidirectional agent with the session storage.

    Args:
        agent: BidiAgent who should be synchronized with the session storage
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support bidirectional agent persistence "
        "(sync_bidi_agent). Provide an implementation or use a "
        "SessionManager with bidirectional agent support."
    )

sync_multi_agent(source, **kwargs)

Serialize and sync multi-agent with the session storage.

Parameters:

Name Type Description Default
source MultiAgentBase

Multi-agent source object to persist

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}
Source code in strands/session/session_manager.py
100
101
102
103
104
105
106
107
108
109
110
111
def sync_multi_agent(self, source: "MultiAgentBase", **kwargs: Any) -> None:
    """Serialize and sync multi-agent with the session storage.

    Args:
        source: Multi-agent source object to persist
        **kwargs: Additional keyword arguments for future extensibility.
    """
    raise NotImplementedError(
        f"{self.__class__.__name__} does not support multi-agent persistence "
        "(sync_multi_agent). Provide an implementation or use a "
        "SessionManager with session_type=SessionType.MULTI_AGENT."
    )

SessionMessage dataclass

Message within a SessionAgent.

Attributes:

Name Type Description
message Message

Message content

message_id int

Index of the message in the conversation history

redact_message Optional[Message]

If the original message is redacted, this is the new content to use

created_at str

ISO format timestamp for when this message was created

updated_at str

ISO format timestamp for when this message was last updated

Source code in strands/types/session.py
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
@dataclass
class SessionMessage:
    """Message within a SessionAgent.

    Attributes:
        message: Message content
        message_id: Index of the message in the conversation history
        redact_message: If the original message is redacted, this is the new content to use
        created_at: ISO format timestamp for when this message was created
        updated_at: ISO format timestamp for when this message was last updated
    """

    message: Message
    message_id: int
    redact_message: Optional[Message] = None
    created_at: str = field(default_factory=lambda: datetime.now(timezone.utc).isoformat())
    updated_at: str = field(default_factory=lambda: datetime.now(timezone.utc).isoformat())

    @classmethod
    def from_message(cls, message: Message, index: int) -> "SessionMessage":
        """Convert from a Message, base64 encoding bytes values."""
        return cls(
            message=message,
            message_id=index,
            created_at=datetime.now(timezone.utc).isoformat(),
            updated_at=datetime.now(timezone.utc).isoformat(),
        )

    def to_message(self) -> Message:
        """Convert SessionMessage back to a Message, decoding any bytes values.

        If the message was redacted, return the redact content instead.
        """
        if self.redact_message is not None:
            return self.redact_message
        else:
            return self.message

    @classmethod
    def from_dict(cls, env: dict[str, Any]) -> "SessionMessage":
        """Initialize a SessionMessage from a dictionary, ignoring keys that are not class parameters."""
        extracted_relevant_parameters = {k: v for k, v in env.items() if k in inspect.signature(cls).parameters}
        return cls(**decode_bytes_values(extracted_relevant_parameters))

    def to_dict(self) -> dict[str, Any]:
        """Convert the SessionMessage to a dictionary representation."""
        return encode_bytes_values(asdict(self))  # type: ignore

from_dict(env) classmethod

Initialize a SessionMessage from a dictionary, ignoring keys that are not class parameters.

Source code in strands/types/session.py
 96
 97
 98
 99
100
@classmethod
def from_dict(cls, env: dict[str, Any]) -> "SessionMessage":
    """Initialize a SessionMessage from a dictionary, ignoring keys that are not class parameters."""
    extracted_relevant_parameters = {k: v for k, v in env.items() if k in inspect.signature(cls).parameters}
    return cls(**decode_bytes_values(extracted_relevant_parameters))

from_message(message, index) classmethod

Convert from a Message, base64 encoding bytes values.

Source code in strands/types/session.py
76
77
78
79
80
81
82
83
84
@classmethod
def from_message(cls, message: Message, index: int) -> "SessionMessage":
    """Convert from a Message, base64 encoding bytes values."""
    return cls(
        message=message,
        message_id=index,
        created_at=datetime.now(timezone.utc).isoformat(),
        updated_at=datetime.now(timezone.utc).isoformat(),
    )

to_dict()

Convert the SessionMessage to a dictionary representation.

Source code in strands/types/session.py
102
103
104
def to_dict(self) -> dict[str, Any]:
    """Convert the SessionMessage to a dictionary representation."""
    return encode_bytes_values(asdict(self))  # type: ignore

to_message()

Convert SessionMessage back to a Message, decoding any bytes values.

If the message was redacted, return the redact content instead.

Source code in strands/types/session.py
86
87
88
89
90
91
92
93
94
def to_message(self) -> Message:
    """Convert SessionMessage back to a Message, decoding any bytes values.

    If the message was redacted, return the redact content instead.
    """
    if self.redact_message is not None:
        return self.redact_message
    else:
        return self.message

SessionRepository

Bases: ABC

Abstract repository for creating, reading, and updating Sessions, AgentSessions, and AgentMessages.

Source code in strands/session/session_repository.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
class SessionRepository(ABC):
    """Abstract repository for creating, reading, and updating Sessions, AgentSessions, and AgentMessages."""

    @abstractmethod
    def create_session(self, session: Session, **kwargs: Any) -> Session:
        """Create a new Session."""

    @abstractmethod
    def read_session(self, session_id: str, **kwargs: Any) -> Optional[Session]:
        """Read a Session."""

    @abstractmethod
    def create_agent(self, session_id: str, session_agent: SessionAgent, **kwargs: Any) -> None:
        """Create a new Agent in a Session."""

    @abstractmethod
    def read_agent(self, session_id: str, agent_id: str, **kwargs: Any) -> Optional[SessionAgent]:
        """Read an Agent."""

    @abstractmethod
    def update_agent(self, session_id: str, session_agent: SessionAgent, **kwargs: Any) -> None:
        """Update an Agent."""

    @abstractmethod
    def create_message(self, session_id: str, agent_id: str, session_message: SessionMessage, **kwargs: Any) -> None:
        """Create a new Message for the Agent."""

    @abstractmethod
    def read_message(self, session_id: str, agent_id: str, message_id: int, **kwargs: Any) -> Optional[SessionMessage]:
        """Read a Message."""

    @abstractmethod
    def update_message(self, session_id: str, agent_id: str, session_message: SessionMessage, **kwargs: Any) -> None:
        """Update a Message.

        A message is usually only updated when some content is redacted due to a guardrail.
        """

    @abstractmethod
    def list_messages(
        self, session_id: str, agent_id: str, limit: Optional[int] = None, offset: int = 0, **kwargs: Any
    ) -> list[SessionMessage]:
        """List Messages from an Agent with pagination."""

    def create_multi_agent(self, session_id: str, multi_agent: "MultiAgentBase", **kwargs: Any) -> None:
        """Create a new MultiAgent state for the Session."""
        raise NotImplementedError("MultiAgent is not implemented for this repository")

    def read_multi_agent(self, session_id: str, multi_agent_id: str, **kwargs: Any) -> Optional[dict[str, Any]]:
        """Read the MultiAgent state for the Session."""
        raise NotImplementedError("MultiAgent is not implemented for this repository")

    def update_multi_agent(self, session_id: str, multi_agent: "MultiAgentBase", **kwargs: Any) -> None:
        """Update the MultiAgent state for the Session."""
        raise NotImplementedError("MultiAgent is not implemented for this repository")

create_agent(session_id, session_agent, **kwargs) abstractmethod

Create a new Agent in a Session.

Source code in strands/session/session_repository.py
23
24
25
@abstractmethod
def create_agent(self, session_id: str, session_agent: SessionAgent, **kwargs: Any) -> None:
    """Create a new Agent in a Session."""

create_message(session_id, agent_id, session_message, **kwargs) abstractmethod

Create a new Message for the Agent.

Source code in strands/session/session_repository.py
35
36
37
@abstractmethod
def create_message(self, session_id: str, agent_id: str, session_message: SessionMessage, **kwargs: Any) -> None:
    """Create a new Message for the Agent."""

create_multi_agent(session_id, multi_agent, **kwargs)

Create a new MultiAgent state for the Session.

Source code in strands/session/session_repository.py
56
57
58
def create_multi_agent(self, session_id: str, multi_agent: "MultiAgentBase", **kwargs: Any) -> None:
    """Create a new MultiAgent state for the Session."""
    raise NotImplementedError("MultiAgent is not implemented for this repository")

create_session(session, **kwargs) abstractmethod

Create a new Session.

Source code in strands/session/session_repository.py
15
16
17
@abstractmethod
def create_session(self, session: Session, **kwargs: Any) -> Session:
    """Create a new Session."""

list_messages(session_id, agent_id, limit=None, offset=0, **kwargs) abstractmethod

List Messages from an Agent with pagination.

Source code in strands/session/session_repository.py
50
51
52
53
54
@abstractmethod
def list_messages(
    self, session_id: str, agent_id: str, limit: Optional[int] = None, offset: int = 0, **kwargs: Any
) -> list[SessionMessage]:
    """List Messages from an Agent with pagination."""

read_agent(session_id, agent_id, **kwargs) abstractmethod

Read an Agent.

Source code in strands/session/session_repository.py
27
28
29
@abstractmethod
def read_agent(self, session_id: str, agent_id: str, **kwargs: Any) -> Optional[SessionAgent]:
    """Read an Agent."""

read_message(session_id, agent_id, message_id, **kwargs) abstractmethod

Read a Message.

Source code in strands/session/session_repository.py
39
40
41
@abstractmethod
def read_message(self, session_id: str, agent_id: str, message_id: int, **kwargs: Any) -> Optional[SessionMessage]:
    """Read a Message."""

read_multi_agent(session_id, multi_agent_id, **kwargs)

Read the MultiAgent state for the Session.

Source code in strands/session/session_repository.py
60
61
62
def read_multi_agent(self, session_id: str, multi_agent_id: str, **kwargs: Any) -> Optional[dict[str, Any]]:
    """Read the MultiAgent state for the Session."""
    raise NotImplementedError("MultiAgent is not implemented for this repository")

read_session(session_id, **kwargs) abstractmethod

Read a Session.

Source code in strands/session/session_repository.py
19
20
21
@abstractmethod
def read_session(self, session_id: str, **kwargs: Any) -> Optional[Session]:
    """Read a Session."""

update_agent(session_id, session_agent, **kwargs) abstractmethod

Update an Agent.

Source code in strands/session/session_repository.py
31
32
33
@abstractmethod
def update_agent(self, session_id: str, session_agent: SessionAgent, **kwargs: Any) -> None:
    """Update an Agent."""

update_message(session_id, agent_id, session_message, **kwargs) abstractmethod

Update a Message.

A message is usually only updated when some content is redacted due to a guardrail.

Source code in strands/session/session_repository.py
43
44
45
46
47
48
@abstractmethod
def update_message(self, session_id: str, agent_id: str, session_message: SessionMessage, **kwargs: Any) -> None:
    """Update a Message.

    A message is usually only updated when some content is redacted due to a guardrail.
    """

update_multi_agent(session_id, multi_agent, **kwargs)

Update the MultiAgent state for the Session.

Source code in strands/session/session_repository.py
64
65
66
def update_multi_agent(self, session_id: str, multi_agent: "MultiAgentBase", **kwargs: Any) -> None:
    """Update the MultiAgent state for the Session."""
    raise NotImplementedError("MultiAgent is not implemented for this repository")

SessionType

Bases: str, Enum

Enumeration of session types.

As sessions are expanded to support new use cases like multi-agent patterns, new types will be added here.

Source code in strands/types/session.py
18
19
20
21
22
23
24
25
class SessionType(str, Enum):
    """Enumeration of session types.

    As sessions are expanded to support new use cases like multi-agent patterns,
    new types will be added here.
    """

    AGENT = "AGENT"

generate_missing_tool_result_content(tool_use_ids)

Generate ToolResult content blocks for orphaned ToolUse message.

Source code in strands/tools/_tool_helpers.py
19
20
21
22
23
24
25
26
27
28
29
30
def generate_missing_tool_result_content(tool_use_ids: list[str]) -> list[ContentBlock]:
    """Generate ToolResult content blocks for orphaned ToolUse message."""
    return [
        {
            "toolResult": {
                "toolUseId": tool_use_id,
                "status": "error",
                "content": [{"text": "Tool was interrupted."}],
            }
        }
        for tool_use_id in tool_use_ids
    ]