Skip to content

strands.tools.mcp.mcp_agent_tool

MCP Agent Tool module for adapting Model Context Protocol tools to the agent framework.

This module provides the MCPAgentTool class which serves as an adapter between MCP (Model Context Protocol) tools and the agent framework's tool interface. It allows MCP tools to be seamlessly integrated and used within the agent ecosystem.

ToolGenerator = AsyncGenerator[Any, None] module-attribute

Generator of tool events with the last being the tool result.

logger = logging.getLogger(__name__) module-attribute

AgentTool

Bases: ABC

Abstract base class for all SDK tools.

This class defines the interface that all tool implementations must follow. Each tool must provide its name, specification, and implement a stream method that executes the tool's functionality.

Source code in strands/types/tools.py
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
class AgentTool(ABC):
    """Abstract base class for all SDK tools.

    This class defines the interface that all tool implementations must follow. Each tool must provide its name,
    specification, and implement a stream method that executes the tool's functionality.
    """

    _is_dynamic: bool

    def __init__(self) -> None:
        """Initialize the base agent tool with default dynamic state."""
        self._is_dynamic = False

    @property
    @abstractmethod
    # pragma: no cover
    def tool_name(self) -> str:
        """The unique name of the tool used for identification and invocation."""
        pass

    @property
    @abstractmethod
    # pragma: no cover
    def tool_spec(self) -> ToolSpec:
        """Tool specification that describes its functionality and parameters."""
        pass

    @property
    @abstractmethod
    # pragma: no cover
    def tool_type(self) -> str:
        """The type of the tool implementation (e.g., 'python', 'javascript', 'lambda').

        Used for categorization and appropriate handling.
        """
        pass

    @property
    def supports_hot_reload(self) -> bool:
        """Whether the tool supports automatic reloading when modified.

        Returns:
            False by default.
        """
        return False

    @abstractmethod
    # pragma: no cover
    def stream(self, tool_use: ToolUse, invocation_state: dict[str, Any], **kwargs: Any) -> ToolGenerator:
        """Stream tool events and return the final result.

        Args:
            tool_use: The tool use request containing tool ID and parameters.
            invocation_state: Caller-provided kwargs that were passed to the agent when it was invoked (agent(),
                              agent.invoke_async(), etc.).
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Tool events with the last being the tool result.
        """
        ...

    @property
    def is_dynamic(self) -> bool:
        """Whether the tool was dynamically loaded during runtime.

        Dynamic tools may have different lifecycle management.

        Returns:
            True if loaded dynamically, False otherwise.
        """
        return self._is_dynamic

    def mark_dynamic(self) -> None:
        """Mark this tool as dynamically loaded."""
        self._is_dynamic = True

    def get_display_properties(self) -> dict[str, str]:
        """Get properties to display in UI representations of this tool.

        Subclasses can extend this to include additional properties.

        Returns:
            Dictionary of property names and their string values.
        """
        return {
            "Name": self.tool_name,
            "Type": self.tool_type,
        }

is_dynamic property

Whether the tool was dynamically loaded during runtime.

Dynamic tools may have different lifecycle management.

Returns:

Type Description
bool

True if loaded dynamically, False otherwise.

supports_hot_reload property

Whether the tool supports automatic reloading when modified.

Returns:

Type Description
bool

False by default.

tool_name abstractmethod property

The unique name of the tool used for identification and invocation.

tool_spec abstractmethod property

Tool specification that describes its functionality and parameters.

tool_type abstractmethod property

The type of the tool implementation (e.g., 'python', 'javascript', 'lambda').

Used for categorization and appropriate handling.

__init__()

Initialize the base agent tool with default dynamic state.

Source code in strands/types/tools.py
227
228
229
def __init__(self) -> None:
    """Initialize the base agent tool with default dynamic state."""
    self._is_dynamic = False

get_display_properties()

Get properties to display in UI representations of this tool.

Subclasses can extend this to include additional properties.

Returns:

Type Description
dict[str, str]

Dictionary of property names and their string values.

Source code in strands/types/tools.py
295
296
297
298
299
300
301
302
303
304
305
306
def get_display_properties(self) -> dict[str, str]:
    """Get properties to display in UI representations of this tool.

    Subclasses can extend this to include additional properties.

    Returns:
        Dictionary of property names and their string values.
    """
    return {
        "Name": self.tool_name,
        "Type": self.tool_type,
    }

mark_dynamic()

Mark this tool as dynamically loaded.

Source code in strands/types/tools.py
291
292
293
def mark_dynamic(self) -> None:
    """Mark this tool as dynamically loaded."""
    self._is_dynamic = True

stream(tool_use, invocation_state, **kwargs) abstractmethod

Stream tool events and return the final result.

Parameters:

Name Type Description Default
tool_use ToolUse

The tool use request containing tool ID and parameters.

required
invocation_state dict[str, Any]

Caller-provided kwargs that were passed to the agent when it was invoked (agent(), agent.invoke_async(), etc.).

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
ToolGenerator

Tool events with the last being the tool result.

Source code in strands/types/tools.py
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
@abstractmethod
# pragma: no cover
def stream(self, tool_use: ToolUse, invocation_state: dict[str, Any], **kwargs: Any) -> ToolGenerator:
    """Stream tool events and return the final result.

    Args:
        tool_use: The tool use request containing tool ID and parameters.
        invocation_state: Caller-provided kwargs that were passed to the agent when it was invoked (agent(),
                          agent.invoke_async(), etc.).
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Tool events with the last being the tool result.
    """
    ...

MCPAgentTool

Bases: AgentTool

Adapter class that wraps an MCP tool and exposes it as an AgentTool.

This class bridges the gap between the MCP protocol's tool representation and the agent framework's tool interface, allowing MCP tools to be used seamlessly within the agent framework.

Source code in strands/tools/mcp/mcp_agent_tool.py
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
class MCPAgentTool(AgentTool):
    """Adapter class that wraps an MCP tool and exposes it as an AgentTool.

    This class bridges the gap between the MCP protocol's tool representation
    and the agent framework's tool interface, allowing MCP tools to be used
    seamlessly within the agent framework.
    """

    def __init__(
        self,
        mcp_tool: MCPTool,
        mcp_client: "MCPClient",
        name_override: str | None = None,
        timeout: timedelta | None = None,
    ) -> None:
        """Initialize a new MCPAgentTool instance.

        Args:
            mcp_tool: The MCP tool to adapt
            mcp_client: The MCP server connection to use for tool invocation
            name_override: Optional name to use for the agent tool (for disambiguation)
                           If None, uses the original MCP tool name
            timeout: Optional timeout duration for tool execution
        """
        super().__init__()
        logger.debug("tool_name=<%s> | creating mcp agent tool", mcp_tool.name)
        self.mcp_tool = mcp_tool
        self.mcp_client = mcp_client
        self._agent_tool_name = name_override or mcp_tool.name
        self.timeout = timeout

    @property
    def tool_name(self) -> str:
        """Get the name of the tool.

        Returns:
            str: The agent-facing name of the tool (may be disambiguated)
        """
        return self._agent_tool_name

    @property
    def tool_spec(self) -> ToolSpec:
        """Get the specification of the tool.

        This method converts the MCP tool specification to the agent framework's
        ToolSpec format, including the input schema, description, and optional output schema.

        Returns:
            ToolSpec: The tool specification in the agent framework format
        """
        description: str = self.mcp_tool.description or f"Tool which performs {self.mcp_tool.name}"

        spec: ToolSpec = {
            "inputSchema": {"json": self.mcp_tool.inputSchema},
            "name": self.tool_name,  # Use agent-facing name in spec
            "description": description,
        }

        if self.mcp_tool.outputSchema:
            spec["outputSchema"] = {"json": self.mcp_tool.outputSchema}

        return spec

    @property
    def tool_type(self) -> str:
        """Get the type of the tool.

        Returns:
            str: The type of the tool, always "python" for MCP tools
        """
        return "python"

    @override
    async def stream(self, tool_use: ToolUse, invocation_state: dict[str, Any], **kwargs: Any) -> ToolGenerator:
        """Stream the MCP tool.

        This method delegates the tool stream to the MCP server connection, passing the tool use ID, tool name, and
        input arguments.

        Args:
            tool_use: The tool use request containing tool ID and parameters.
            invocation_state: Context for the tool invocation, including agent state.
            **kwargs: Additional keyword arguments for future extensibility.

        Yields:
            Tool events with the last being the tool result.
        """
        logger.debug("tool_name=<%s>, tool_use_id=<%s> | streaming", self.tool_name, tool_use["toolUseId"])

        result = await self.mcp_client.call_tool_async(
            tool_use_id=tool_use["toolUseId"],
            name=self.mcp_tool.name,  # Use original MCP name for server communication
            arguments=tool_use["input"],
            read_timeout_seconds=self.timeout,
        )
        yield ToolResultEvent(result)

tool_name property

Get the name of the tool.

Returns:

Name Type Description
str str

The agent-facing name of the tool (may be disambiguated)

tool_spec property

Get the specification of the tool.

This method converts the MCP tool specification to the agent framework's ToolSpec format, including the input schema, description, and optional output schema.

Returns:

Name Type Description
ToolSpec ToolSpec

The tool specification in the agent framework format

tool_type property

Get the type of the tool.

Returns:

Name Type Description
str str

The type of the tool, always "python" for MCP tools

__init__(mcp_tool, mcp_client, name_override=None, timeout=None)

Initialize a new MCPAgentTool instance.

Parameters:

Name Type Description Default
mcp_tool Tool

The MCP tool to adapt

required
mcp_client MCPClient

The MCP server connection to use for tool invocation

required
name_override str | None

Optional name to use for the agent tool (for disambiguation) If None, uses the original MCP tool name

None
timeout timedelta | None

Optional timeout duration for tool execution

None
Source code in strands/tools/mcp/mcp_agent_tool.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def __init__(
    self,
    mcp_tool: MCPTool,
    mcp_client: "MCPClient",
    name_override: str | None = None,
    timeout: timedelta | None = None,
) -> None:
    """Initialize a new MCPAgentTool instance.

    Args:
        mcp_tool: The MCP tool to adapt
        mcp_client: The MCP server connection to use for tool invocation
        name_override: Optional name to use for the agent tool (for disambiguation)
                       If None, uses the original MCP tool name
        timeout: Optional timeout duration for tool execution
    """
    super().__init__()
    logger.debug("tool_name=<%s> | creating mcp agent tool", mcp_tool.name)
    self.mcp_tool = mcp_tool
    self.mcp_client = mcp_client
    self._agent_tool_name = name_override or mcp_tool.name
    self.timeout = timeout

stream(tool_use, invocation_state, **kwargs) async

Stream the MCP tool.

This method delegates the tool stream to the MCP server connection, passing the tool use ID, tool name, and input arguments.

Parameters:

Name Type Description Default
tool_use ToolUse

The tool use request containing tool ID and parameters.

required
invocation_state dict[str, Any]

Context for the tool invocation, including agent state.

required
**kwargs Any

Additional keyword arguments for future extensibility.

{}

Yields:

Type Description
ToolGenerator

Tool events with the last being the tool result.

Source code in strands/tools/mcp/mcp_agent_tool.py
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
@override
async def stream(self, tool_use: ToolUse, invocation_state: dict[str, Any], **kwargs: Any) -> ToolGenerator:
    """Stream the MCP tool.

    This method delegates the tool stream to the MCP server connection, passing the tool use ID, tool name, and
    input arguments.

    Args:
        tool_use: The tool use request containing tool ID and parameters.
        invocation_state: Context for the tool invocation, including agent state.
        **kwargs: Additional keyword arguments for future extensibility.

    Yields:
        Tool events with the last being the tool result.
    """
    logger.debug("tool_name=<%s>, tool_use_id=<%s> | streaming", self.tool_name, tool_use["toolUseId"])

    result = await self.mcp_client.call_tool_async(
        tool_use_id=tool_use["toolUseId"],
        name=self.mcp_tool.name,  # Use original MCP name for server communication
        arguments=tool_use["input"],
        read_timeout_seconds=self.timeout,
    )
    yield ToolResultEvent(result)

MCPClient

Bases: ToolProvider

Represents a connection to a Model Context Protocol (MCP) server.

This class implements a context manager pattern for efficient connection management, allowing reuse of the same connection for multiple tool calls to reduce latency. It handles the creation, initialization, and cleanup of MCP connections.

The connection runs in a background thread to avoid blocking the main application thread while maintaining communication with the MCP service. When structured content is available from MCP tools, it will be returned as the last item in the content array of the ToolResult.

Warning

This class implements the experimental ToolProvider interface and its methods are subject to change.

Source code in strands/tools/mcp/mcp_client.py
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
class MCPClient(ToolProvider):
    """Represents a connection to a Model Context Protocol (MCP) server.

    This class implements a context manager pattern for efficient connection management,
    allowing reuse of the same connection for multiple tool calls to reduce latency.
    It handles the creation, initialization, and cleanup of MCP connections.

    The connection runs in a background thread to avoid blocking the main application thread
    while maintaining communication with the MCP service. When structured content is available
    from MCP tools, it will be returned as the last item in the content array of the ToolResult.

    Warning:
        This class implements the experimental ToolProvider interface and its methods
        are subject to change.
    """

    def __init__(
        self,
        transport_callable: Callable[[], MCPTransport],
        *,
        startup_timeout: int = 30,
        tool_filters: ToolFilters | None = None,
        prefix: str | None = None,
        elicitation_callback: Optional[ElicitationFnT] = None,
    ) -> None:
        """Initialize a new MCP Server connection.

        Args:
            transport_callable: A callable that returns an MCPTransport (read_stream, write_stream) tuple.
            startup_timeout: Timeout after which MCP server initialization should be cancelled.
                Defaults to 30.
            tool_filters: Optional filters to apply to tools.
            prefix: Optional prefix for tool names.
            elicitation_callback: Optional callback function to handle elicitation requests from the MCP server.
        """
        self._startup_timeout = startup_timeout
        self._tool_filters = tool_filters
        self._prefix = prefix
        self._elicitation_callback = elicitation_callback

        mcp_instrumentation()
        self._session_id = uuid.uuid4()
        self._log_debug_with_thread("initializing MCPClient connection")
        # Main thread blocks until future completes
        self._init_future: futures.Future[None] = futures.Future()
        # Set within the inner loop as it needs the asyncio loop
        self._close_future: asyncio.futures.Future[None] | None = None
        self._close_exception: None | Exception = None
        # Do not want to block other threads while close event is false
        self._transport_callable = transport_callable

        self._background_thread: threading.Thread | None = None
        self._background_thread_session: ClientSession | None = None
        self._background_thread_event_loop: AbstractEventLoop | None = None
        self._loaded_tools: list[MCPAgentTool] | None = None
        self._tool_provider_started = False
        self._consumers: set[Any] = set()

    def __enter__(self) -> "MCPClient":
        """Context manager entry point which initializes the MCP server connection.

        TODO: Refactor to lazy initialization pattern following idiomatic Python.
        Heavy work in __enter__ is non-idiomatic - should move connection logic to first method call instead.
        """
        return self.start()

    def __exit__(self, exc_type: BaseException, exc_val: BaseException, exc_tb: TracebackType) -> None:
        """Context manager exit point that cleans up resources."""
        self.stop(exc_type, exc_val, exc_tb)

    def start(self) -> "MCPClient":
        """Starts the background thread and waits for initialization.

        This method starts the background thread that manages the MCP connection
        and blocks until the connection is ready or times out.

        Returns:
            self: The MCPClient instance

        Raises:
            Exception: If the MCP connection fails to initialize within the timeout period
        """
        if self._is_session_active():
            raise MCPClientInitializationError("the client session is currently running")

        self._log_debug_with_thread("entering MCPClient context")
        self._background_thread = threading.Thread(target=self._background_task, args=[], daemon=True)
        self._background_thread.start()
        self._log_debug_with_thread("background thread started, waiting for ready event")
        try:
            # Blocking main thread until session is initialized in other thread or if the thread stops
            self._init_future.result(timeout=self._startup_timeout)
            self._log_debug_with_thread("the client initialization was successful")
        except futures.TimeoutError as e:
            logger.exception("client initialization timed out")
            # Pass None for exc_type, exc_val, exc_tb since this isn't a context manager exit
            self.stop(None, None, None)
            raise MCPClientInitializationError(
                f"background thread did not start in {self._startup_timeout} seconds"
            ) from e
        except Exception as e:
            logger.exception("client failed to initialize")
            # Pass None for exc_type, exc_val, exc_tb since this isn't a context manager exit
            self.stop(None, None, None)
            raise MCPClientInitializationError("the client initialization failed") from e
        return self

    # ToolProvider interface methods (experimental, as ToolProvider is experimental)
    async def load_tools(self, **kwargs: Any) -> Sequence[AgentTool]:
        """Load and return tools from the MCP server.

        This method implements the ToolProvider interface by loading tools
        from the MCP server and caching them for reuse.

        Args:
            **kwargs: Additional arguments for future compatibility.

        Returns:
            List of AgentTool instances from the MCP server.
        """
        logger.debug(
            "started=<%s>, cached_tools=<%s> | loading tools",
            self._tool_provider_started,
            self._loaded_tools is not None,
        )

        if not self._tool_provider_started:
            try:
                logger.debug("starting MCP client")
                self.start()
                self._tool_provider_started = True
                logger.debug("MCP client started successfully")
            except Exception as e:
                logger.error("error=<%s> | failed to start MCP client", e)
                raise ToolProviderException(f"Failed to start MCP client: {e}") from e

        if self._loaded_tools is None:
            logger.debug("loading tools from MCP server")
            self._loaded_tools = []
            pagination_token = None
            page_count = 0

            while True:
                logger.debug("page=<%d>, token=<%s> | fetching tools page", page_count, pagination_token)
                # Use constructor defaults for prefix and filters in load_tools
                paginated_tools = self.list_tools_sync(
                    pagination_token, prefix=self._prefix, tool_filters=self._tool_filters
                )

                # Tools are already filtered by list_tools_sync, so add them all
                for tool in paginated_tools:
                    self._loaded_tools.append(tool)

                logger.debug(
                    "page=<%d>, page_tools=<%d>, total_filtered=<%d> | processed page",
                    page_count,
                    len(paginated_tools),
                    len(self._loaded_tools),
                )

                pagination_token = paginated_tools.pagination_token
                page_count += 1

                if pagination_token is None:
                    break

            logger.debug("final_tools=<%d> | loading complete", len(self._loaded_tools))

        return self._loaded_tools

    def add_consumer(self, consumer_id: Any, **kwargs: Any) -> None:
        """Add a consumer to this tool provider.

        Synchronous to prevent GC deadlocks when called from Agent finalizers.
        """
        self._consumers.add(consumer_id)
        logger.debug("added provider consumer, count=%d", len(self._consumers))

    def remove_consumer(self, consumer_id: Any, **kwargs: Any) -> None:
        """Remove a consumer from this tool provider.

        This method is idempotent - calling it multiple times with the same ID
        has no additional effect after the first call.

        Synchronous to prevent GC deadlocks when called from Agent finalizers.
        Uses existing synchronous stop() method for safe cleanup.
        """
        self._consumers.discard(consumer_id)
        logger.debug("removed provider consumer, count=%d", len(self._consumers))

        if not self._consumers and self._tool_provider_started:
            logger.debug("no consumers remaining, cleaning up")
            try:
                self.stop(None, None, None)  # Existing sync method - safe for finalizers
                self._tool_provider_started = False
                self._loaded_tools = None
            except Exception as e:
                logger.error("error=<%s> | failed to cleanup MCP client", e)
                raise ToolProviderException(f"Failed to cleanup MCP client: {e}") from e

    # MCP-specific methods

    def stop(
        self, exc_type: Optional[BaseException], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]
    ) -> None:
        """Signals the background thread to stop and waits for it to complete, ensuring proper cleanup of all resources.

        This method is defensive and can handle partial initialization states that may occur
        if start() fails partway through initialization.

        Resources to cleanup:
        - _background_thread: Thread running the async event loop
        - _background_thread_session: MCP ClientSession (auto-closed by context manager)
        - _background_thread_event_loop: AsyncIO event loop in background thread
        - _close_future: AsyncIO future to signal thread shutdown
        - _close_exception: Exception that caused the background thread shutdown; None if a normal shutdown occurred.
        - _init_future: Future for initialization synchronization

        Cleanup order:
        1. Signal close future to background thread (if session initialized)
        2. Wait for background thread to complete
        3. Reset all state for reuse

        Args:
            exc_type: Exception type if an exception was raised in the context
            exc_val: Exception value if an exception was raised in the context
            exc_tb: Exception traceback if an exception was raised in the context
        """
        self._log_debug_with_thread("exiting MCPClient context")

        # Only try to signal close future if we have a background thread
        if self._background_thread is not None:
            # Signal close future if event loop exists
            if self._background_thread_event_loop is not None:

                async def _set_close_event() -> None:
                    if self._close_future and not self._close_future.done():
                        self._close_future.set_result(None)

                # Not calling _invoke_on_background_thread since the session does not need to exist
                # we only need the thread and event loop to exist.
                asyncio.run_coroutine_threadsafe(coro=_set_close_event(), loop=self._background_thread_event_loop)

            self._log_debug_with_thread("waiting for background thread to join")
            self._background_thread.join()

        if self._background_thread_event_loop is not None:
            self._background_thread_event_loop.close()

        self._log_debug_with_thread("background thread is closed, MCPClient context exited")

        # Reset fields to allow instance reuse
        self._init_future = futures.Future()
        self._background_thread = None
        self._background_thread_session = None
        self._background_thread_event_loop = None
        self._session_id = uuid.uuid4()
        self._loaded_tools = None
        self._tool_provider_started = False
        self._consumers = set()

        if self._close_exception:
            exception = self._close_exception
            self._close_exception = None
            raise RuntimeError("Connection to the MCP server was closed") from exception

    def list_tools_sync(
        self,
        pagination_token: str | None = None,
        prefix: str | None = None,
        tool_filters: ToolFilters | None = None,
    ) -> PaginatedList[MCPAgentTool]:
        """Synchronously retrieves the list of available tools from the MCP server.

        This method calls the asynchronous list_tools method on the MCP session
        and adapts the returned tools to the AgentTool interface.

        Args:
            pagination_token: Optional token for pagination
            prefix: Optional prefix to apply to tool names. If None, uses constructor default.
                   If explicitly provided (including empty string), overrides constructor default.
            tool_filters: Optional filters to apply to tools. If None, uses constructor default.
                         If explicitly provided (including empty dict), overrides constructor default.

        Returns:
            List[AgentTool]: A list of available tools adapted to the AgentTool interface
        """
        self._log_debug_with_thread("listing MCP tools synchronously")
        if not self._is_session_active():
            raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

        effective_prefix = self._prefix if prefix is None else prefix
        effective_filters = self._tool_filters if tool_filters is None else tool_filters

        async def _list_tools_async() -> ListToolsResult:
            return await cast(ClientSession, self._background_thread_session).list_tools(cursor=pagination_token)

        list_tools_response: ListToolsResult = self._invoke_on_background_thread(_list_tools_async()).result()
        self._log_debug_with_thread("received %d tools from MCP server", len(list_tools_response.tools))

        mcp_tools = []
        for tool in list_tools_response.tools:
            # Apply prefix if specified
            if effective_prefix:
                prefixed_name = f"{effective_prefix}_{tool.name}"
                mcp_tool = MCPAgentTool(tool, self, name_override=prefixed_name)
                logger.debug("tool_rename=<%s->%s> | renamed tool", tool.name, prefixed_name)
            else:
                mcp_tool = MCPAgentTool(tool, self)

            # Apply filters if specified
            if self._should_include_tool_with_filters(mcp_tool, effective_filters):
                mcp_tools.append(mcp_tool)

        self._log_debug_with_thread("successfully adapted %d MCP tools", len(mcp_tools))
        return PaginatedList[MCPAgentTool](mcp_tools, token=list_tools_response.nextCursor)

    def list_prompts_sync(self, pagination_token: Optional[str] = None) -> ListPromptsResult:
        """Synchronously retrieves the list of available prompts from the MCP server.

        This method calls the asynchronous list_prompts method on the MCP session
        and returns the raw ListPromptsResult with pagination support.

        Args:
            pagination_token: Optional token for pagination

        Returns:
            ListPromptsResult: The raw MCP response containing prompts and pagination info
        """
        self._log_debug_with_thread("listing MCP prompts synchronously")
        if not self._is_session_active():
            raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

        async def _list_prompts_async() -> ListPromptsResult:
            return await cast(ClientSession, self._background_thread_session).list_prompts(cursor=pagination_token)

        list_prompts_result: ListPromptsResult = self._invoke_on_background_thread(_list_prompts_async()).result()
        self._log_debug_with_thread("received %d prompts from MCP server", len(list_prompts_result.prompts))
        for prompt in list_prompts_result.prompts:
            self._log_debug_with_thread(prompt.name)

        return list_prompts_result

    def get_prompt_sync(self, prompt_id: str, args: dict[str, Any]) -> GetPromptResult:
        """Synchronously retrieves a prompt from the MCP server.

        Args:
            prompt_id: The ID of the prompt to retrieve
            args: Optional arguments to pass to the prompt

        Returns:
            GetPromptResult: The prompt response from the MCP server
        """
        self._log_debug_with_thread("getting MCP prompt synchronously")
        if not self._is_session_active():
            raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

        async def _get_prompt_async() -> GetPromptResult:
            return await cast(ClientSession, self._background_thread_session).get_prompt(prompt_id, arguments=args)

        get_prompt_result: GetPromptResult = self._invoke_on_background_thread(_get_prompt_async()).result()
        self._log_debug_with_thread("received prompt from MCP server")

        return get_prompt_result

    def call_tool_sync(
        self,
        tool_use_id: str,
        name: str,
        arguments: dict[str, Any] | None = None,
        read_timeout_seconds: timedelta | None = None,
    ) -> MCPToolResult:
        """Synchronously calls a tool on the MCP server.

        This method calls the asynchronous call_tool method on the MCP session
        and converts the result to the ToolResult format. If the MCP tool returns
        structured content, it will be included as the last item in the content array
        of the returned ToolResult.

        Args:
            tool_use_id: Unique identifier for this tool use
            name: Name of the tool to call
            arguments: Optional arguments to pass to the tool
            read_timeout_seconds: Optional timeout for the tool call

        Returns:
            MCPToolResult: The result of the tool call
        """
        self._log_debug_with_thread("calling MCP tool '%s' synchronously with tool_use_id=%s", name, tool_use_id)
        if not self._is_session_active():
            raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

        async def _call_tool_async() -> MCPCallToolResult:
            return await cast(ClientSession, self._background_thread_session).call_tool(
                name, arguments, read_timeout_seconds
            )

        try:
            call_tool_result: MCPCallToolResult = self._invoke_on_background_thread(_call_tool_async()).result()
            return self._handle_tool_result(tool_use_id, call_tool_result)
        except Exception as e:
            logger.exception("tool execution failed")
            return self._handle_tool_execution_error(tool_use_id, e)

    async def call_tool_async(
        self,
        tool_use_id: str,
        name: str,
        arguments: dict[str, Any] | None = None,
        read_timeout_seconds: timedelta | None = None,
    ) -> MCPToolResult:
        """Asynchronously calls a tool on the MCP server.

        This method calls the asynchronous call_tool method on the MCP session
        and converts the result to the MCPToolResult format.

        Args:
            tool_use_id: Unique identifier for this tool use
            name: Name of the tool to call
            arguments: Optional arguments to pass to the tool
            read_timeout_seconds: Optional timeout for the tool call

        Returns:
            MCPToolResult: The result of the tool call
        """
        self._log_debug_with_thread("calling MCP tool '%s' asynchronously with tool_use_id=%s", name, tool_use_id)
        if not self._is_session_active():
            raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

        async def _call_tool_async() -> MCPCallToolResult:
            return await cast(ClientSession, self._background_thread_session).call_tool(
                name, arguments, read_timeout_seconds
            )

        try:
            future = self._invoke_on_background_thread(_call_tool_async())
            call_tool_result: MCPCallToolResult = await asyncio.wrap_future(future)
            return self._handle_tool_result(tool_use_id, call_tool_result)
        except Exception as e:
            logger.exception("tool execution failed")
            return self._handle_tool_execution_error(tool_use_id, e)

    def _handle_tool_execution_error(self, tool_use_id: str, exception: Exception) -> MCPToolResult:
        """Create error ToolResult with consistent logging."""
        return MCPToolResult(
            status="error",
            toolUseId=tool_use_id,
            content=[{"text": f"Tool execution failed: {str(exception)}"}],
        )

    def _handle_tool_result(self, tool_use_id: str, call_tool_result: MCPCallToolResult) -> MCPToolResult:
        """Maps MCP tool result to the agent's MCPToolResult format.

        This method processes the content from the MCP tool call result and converts it to the format
        expected by the framework.

        Args:
            tool_use_id: Unique identifier for this tool use
            call_tool_result: The result from the MCP tool call

        Returns:
            MCPToolResult: The converted tool result
        """
        self._log_debug_with_thread("received tool result with %d content items", len(call_tool_result.content))

        # Build a typed list of ToolResultContent.
        mapped_contents: list[ToolResultContent] = [
            mc
            for content in call_tool_result.content
            if (mc := self._map_mcp_content_to_tool_result_content(content)) is not None
        ]

        status: ToolResultStatus = "error" if call_tool_result.isError else "success"
        self._log_debug_with_thread("tool execution completed with status: %s", status)
        result = MCPToolResult(
            status=status,
            toolUseId=tool_use_id,
            content=mapped_contents,
        )

        if call_tool_result.structuredContent:
            result["structuredContent"] = call_tool_result.structuredContent
        if call_tool_result.meta:
            result["metadata"] = call_tool_result.meta

        return result

    async def _async_background_thread(self) -> None:
        """Asynchronous method that runs in the background thread to manage the MCP connection.

        This method establishes the transport connection, creates and initializes the MCP session,
        signals readiness to the main thread, and waits for a close signal.
        """
        self._log_debug_with_thread("starting async background thread for MCP connection")

        # Initialized here so that it has the asyncio loop
        self._close_future = asyncio.Future()

        try:
            async with self._transport_callable() as (read_stream, write_stream, *_):
                self._log_debug_with_thread("transport connection established")
                async with ClientSession(
                    read_stream,
                    write_stream,
                    message_handler=self._handle_error_message,
                    elicitation_callback=self._elicitation_callback,
                ) as session:
                    self._log_debug_with_thread("initializing MCP session")
                    await session.initialize()

                    self._log_debug_with_thread("session initialized successfully")
                    # Store the session for use while we await the close event
                    self._background_thread_session = session
                    # Signal that the session has been created and is ready for use
                    self._init_future.set_result(None)

                    self._log_debug_with_thread("waiting for close signal")
                    # Keep background thread running until signaled to close.
                    # Thread is not blocked as this a future
                    await self._close_future

                    self._log_debug_with_thread("close signal received")
        except Exception as e:
            # If we encounter an exception and the future is still running,
            # it means it was encountered during the initialization phase.
            if not self._init_future.done():
                self._init_future.set_exception(e)
            else:
                # _close_future is automatically cancelled by the framework which doesn't provide us with the useful
                # exception, so instead we store the exception in a different field where stop() can read it
                self._close_exception = e
                if self._close_future and not self._close_future.done():
                    self._close_future.set_result(None)

                self._log_debug_with_thread(
                    "encountered exception on background thread after initialization %s", str(e)
                )

    # Raise an exception if the underlying client raises an exception in a message
    # This happens when the underlying client has an http timeout error
    async def _handle_error_message(self, message: Exception | Any) -> None:
        if isinstance(message, Exception):
            error_msg = str(message).lower()
            if any(pattern in error_msg for pattern in _NON_FATAL_ERROR_PATTERNS):
                self._log_debug_with_thread("ignoring non-fatal MCP session error", message)
            else:
                raise message
        await anyio.lowlevel.checkpoint()

    def _background_task(self) -> None:
        """Sets up and runs the event loop in the background thread.

        This method creates a new event loop for the background thread,
        sets it as the current event loop, and runs the async_background_thread
        coroutine until completion. In this case "until completion" means until the _close_future is resolved.
        This allows for a long-running event loop.
        """
        self._log_debug_with_thread("setting up background task event loop")
        self._background_thread_event_loop = asyncio.new_event_loop()
        asyncio.set_event_loop(self._background_thread_event_loop)
        self._background_thread_event_loop.run_until_complete(self._async_background_thread())

    def _map_mcp_content_to_tool_result_content(
        self,
        content: MCPTextContent | MCPImageContent | MCPEmbeddedResource | Any,
    ) -> Union[ToolResultContent, None]:
        """Maps MCP content types to tool result content types.

        This method converts MCP-specific content types to the generic
        ToolResultContent format used by the agent framework.

        Args:
            content: The MCP content to convert

        Returns:
            ToolResultContent or None: The converted content, or None if the content type is not supported
        """
        if isinstance(content, MCPTextContent):
            self._log_debug_with_thread("mapping MCP text content")
            return {"text": content.text}
        elif isinstance(content, MCPImageContent):
            self._log_debug_with_thread("mapping MCP image content with mime type: %s", content.mimeType)
            return {
                "image": {
                    "format": MIME_TO_FORMAT[content.mimeType],
                    "source": {"bytes": base64.b64decode(content.data)},
                }
            }
        elif isinstance(content, MCPEmbeddedResource):
            """
            TODO: Include URI information in results.
                Models may find it useful to be aware not only of the information,
                but the location of the information too.

                This may be difficult without taking an opinionated position. For example,
                a content block may need to indicate that the following Image content block
                is of particular URI.
            """

            self._log_debug_with_thread("mapping MCP embedded resource content")

            resource = content.resource
            if isinstance(resource, TextResourceContents):
                return {"text": resource.text}
            elif isinstance(resource, BlobResourceContents):
                try:
                    raw_bytes = base64.b64decode(resource.blob)
                except Exception:
                    self._log_debug_with_thread("embedded resource blob could not be decoded - dropping")
                    return None

                if resource.mimeType and (
                    resource.mimeType.startswith("text/")
                    or resource.mimeType
                    in (
                        "application/json",
                        "application/xml",
                        "application/javascript",
                        "application/yaml",
                        "application/x-yaml",
                    )
                    or resource.mimeType.endswith(("+json", "+xml"))
                ):
                    try:
                        return {"text": raw_bytes.decode("utf-8", errors="replace")}
                    except Exception:
                        pass

                if resource.mimeType in MIME_TO_FORMAT:
                    return {
                        "image": {
                            "format": MIME_TO_FORMAT[resource.mimeType],
                            "source": {"bytes": raw_bytes},
                        }
                    }

                self._log_debug_with_thread("embedded resource blob with non-textual/unknown mimeType - dropping")
                return None

            return None  # type: ignore[unreachable]  # Defensive: future MCP resource types
        else:
            self._log_debug_with_thread("unhandled content type: %s - dropping content", content.__class__.__name__)
            return None

    def _log_debug_with_thread(self, msg: str, *args: Any, **kwargs: Any) -> None:
        """Logger helper to help differentiate logs coming from MCPClient background thread."""
        formatted_msg = msg % args if args else msg
        logger.debug(
            "[Thread: %s, Session: %s] %s", threading.current_thread().name, self._session_id, formatted_msg, **kwargs
        )

    def _invoke_on_background_thread(self, coro: Coroutine[Any, Any, T]) -> futures.Future[T]:
        # save a reference to this so that even if it's reset we have the original
        close_future = self._close_future

        if (
            self._background_thread_session is None
            or self._background_thread_event_loop is None
            or close_future is None
        ):
            raise MCPClientInitializationError("the client session was not initialized")

        async def run_async() -> T:
            # Fix for strands-agents/sdk-python/issues/995 - cancel all pending invocations if/when the session closes
            invoke_event = asyncio.create_task(coro)
            tasks: list[asyncio.Task | asyncio.Future] = [
                invoke_event,
                close_future,
            ]

            done, pending = await asyncio.wait(tasks, return_when=asyncio.FIRST_COMPLETED)

            if done.pop() == close_future:
                self._log_debug_with_thread("event loop for the server closed before the invoke completed")
                raise RuntimeError("Connection to the MCP server was closed")
            else:
                return await invoke_event

        invoke_future = asyncio.run_coroutine_threadsafe(coro=run_async(), loop=self._background_thread_event_loop)
        return invoke_future

    def _should_include_tool(self, tool: MCPAgentTool) -> bool:
        """Check if a tool should be included based on constructor filters."""
        return self._should_include_tool_with_filters(tool, self._tool_filters)

    def _should_include_tool_with_filters(self, tool: MCPAgentTool, filters: Optional[ToolFilters]) -> bool:
        """Check if a tool should be included based on provided filters."""
        if not filters:
            return True

        # Apply allowed filter
        if "allowed" in filters:
            if not self._matches_patterns(tool, filters["allowed"]):
                return False

        # Apply rejected filter
        if "rejected" in filters:
            if self._matches_patterns(tool, filters["rejected"]):
                return False

        return True

    def _matches_patterns(self, tool: MCPAgentTool, patterns: list[_ToolMatcher]) -> bool:
        """Check if tool matches any of the given patterns."""
        for pattern in patterns:
            if callable(pattern):
                if pattern(tool):
                    return True
            elif isinstance(pattern, Pattern):
                if pattern.match(tool.mcp_tool.name):
                    return True
            elif isinstance(pattern, str):
                if pattern == tool.mcp_tool.name:
                    return True
        return False

    def _is_session_active(self) -> bool:
        return self._background_thread is not None and self._background_thread.is_alive()

__enter__()

Context manager entry point which initializes the MCP server connection.

TODO: Refactor to lazy initialization pattern following idiomatic Python. Heavy work in enter is non-idiomatic - should move connection logic to first method call instead.

Source code in strands/tools/mcp/mcp_client.py
145
146
147
148
149
150
151
def __enter__(self) -> "MCPClient":
    """Context manager entry point which initializes the MCP server connection.

    TODO: Refactor to lazy initialization pattern following idiomatic Python.
    Heavy work in __enter__ is non-idiomatic - should move connection logic to first method call instead.
    """
    return self.start()

__exit__(exc_type, exc_val, exc_tb)

Context manager exit point that cleans up resources.

Source code in strands/tools/mcp/mcp_client.py
153
154
155
def __exit__(self, exc_type: BaseException, exc_val: BaseException, exc_tb: TracebackType) -> None:
    """Context manager exit point that cleans up resources."""
    self.stop(exc_type, exc_val, exc_tb)

__init__(transport_callable, *, startup_timeout=30, tool_filters=None, prefix=None, elicitation_callback=None)

Initialize a new MCP Server connection.

Parameters:

Name Type Description Default
transport_callable Callable[[], MCPTransport]

A callable that returns an MCPTransport (read_stream, write_stream) tuple.

required
startup_timeout int

Timeout after which MCP server initialization should be cancelled. Defaults to 30.

30
tool_filters ToolFilters | None

Optional filters to apply to tools.

None
prefix str | None

Optional prefix for tool names.

None
elicitation_callback Optional[ElicitationFnT]

Optional callback function to handle elicitation requests from the MCP server.

None
Source code in strands/tools/mcp/mcp_client.py
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
def __init__(
    self,
    transport_callable: Callable[[], MCPTransport],
    *,
    startup_timeout: int = 30,
    tool_filters: ToolFilters | None = None,
    prefix: str | None = None,
    elicitation_callback: Optional[ElicitationFnT] = None,
) -> None:
    """Initialize a new MCP Server connection.

    Args:
        transport_callable: A callable that returns an MCPTransport (read_stream, write_stream) tuple.
        startup_timeout: Timeout after which MCP server initialization should be cancelled.
            Defaults to 30.
        tool_filters: Optional filters to apply to tools.
        prefix: Optional prefix for tool names.
        elicitation_callback: Optional callback function to handle elicitation requests from the MCP server.
    """
    self._startup_timeout = startup_timeout
    self._tool_filters = tool_filters
    self._prefix = prefix
    self._elicitation_callback = elicitation_callback

    mcp_instrumentation()
    self._session_id = uuid.uuid4()
    self._log_debug_with_thread("initializing MCPClient connection")
    # Main thread blocks until future completes
    self._init_future: futures.Future[None] = futures.Future()
    # Set within the inner loop as it needs the asyncio loop
    self._close_future: asyncio.futures.Future[None] | None = None
    self._close_exception: None | Exception = None
    # Do not want to block other threads while close event is false
    self._transport_callable = transport_callable

    self._background_thread: threading.Thread | None = None
    self._background_thread_session: ClientSession | None = None
    self._background_thread_event_loop: AbstractEventLoop | None = None
    self._loaded_tools: list[MCPAgentTool] | None = None
    self._tool_provider_started = False
    self._consumers: set[Any] = set()

add_consumer(consumer_id, **kwargs)

Add a consumer to this tool provider.

Synchronous to prevent GC deadlocks when called from Agent finalizers.

Source code in strands/tools/mcp/mcp_client.py
257
258
259
260
261
262
263
def add_consumer(self, consumer_id: Any, **kwargs: Any) -> None:
    """Add a consumer to this tool provider.

    Synchronous to prevent GC deadlocks when called from Agent finalizers.
    """
    self._consumers.add(consumer_id)
    logger.debug("added provider consumer, count=%d", len(self._consumers))

call_tool_async(tool_use_id, name, arguments=None, read_timeout_seconds=None) async

Asynchronously calls a tool on the MCP server.

This method calls the asynchronous call_tool method on the MCP session and converts the result to the MCPToolResult format.

Parameters:

Name Type Description Default
tool_use_id str

Unique identifier for this tool use

required
name str

Name of the tool to call

required
arguments dict[str, Any] | None

Optional arguments to pass to the tool

None
read_timeout_seconds timedelta | None

Optional timeout for the tool call

None

Returns:

Name Type Description
MCPToolResult MCPToolResult

The result of the tool call

Source code in strands/tools/mcp/mcp_client.py
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
async def call_tool_async(
    self,
    tool_use_id: str,
    name: str,
    arguments: dict[str, Any] | None = None,
    read_timeout_seconds: timedelta | None = None,
) -> MCPToolResult:
    """Asynchronously calls a tool on the MCP server.

    This method calls the asynchronous call_tool method on the MCP session
    and converts the result to the MCPToolResult format.

    Args:
        tool_use_id: Unique identifier for this tool use
        name: Name of the tool to call
        arguments: Optional arguments to pass to the tool
        read_timeout_seconds: Optional timeout for the tool call

    Returns:
        MCPToolResult: The result of the tool call
    """
    self._log_debug_with_thread("calling MCP tool '%s' asynchronously with tool_use_id=%s", name, tool_use_id)
    if not self._is_session_active():
        raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

    async def _call_tool_async() -> MCPCallToolResult:
        return await cast(ClientSession, self._background_thread_session).call_tool(
            name, arguments, read_timeout_seconds
        )

    try:
        future = self._invoke_on_background_thread(_call_tool_async())
        call_tool_result: MCPCallToolResult = await asyncio.wrap_future(future)
        return self._handle_tool_result(tool_use_id, call_tool_result)
    except Exception as e:
        logger.exception("tool execution failed")
        return self._handle_tool_execution_error(tool_use_id, e)

call_tool_sync(tool_use_id, name, arguments=None, read_timeout_seconds=None)

Synchronously calls a tool on the MCP server.

This method calls the asynchronous call_tool method on the MCP session and converts the result to the ToolResult format. If the MCP tool returns structured content, it will be included as the last item in the content array of the returned ToolResult.

Parameters:

Name Type Description Default
tool_use_id str

Unique identifier for this tool use

required
name str

Name of the tool to call

required
arguments dict[str, Any] | None

Optional arguments to pass to the tool

None
read_timeout_seconds timedelta | None

Optional timeout for the tool call

None

Returns:

Name Type Description
MCPToolResult MCPToolResult

The result of the tool call

Source code in strands/tools/mcp/mcp_client.py
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
def call_tool_sync(
    self,
    tool_use_id: str,
    name: str,
    arguments: dict[str, Any] | None = None,
    read_timeout_seconds: timedelta | None = None,
) -> MCPToolResult:
    """Synchronously calls a tool on the MCP server.

    This method calls the asynchronous call_tool method on the MCP session
    and converts the result to the ToolResult format. If the MCP tool returns
    structured content, it will be included as the last item in the content array
    of the returned ToolResult.

    Args:
        tool_use_id: Unique identifier for this tool use
        name: Name of the tool to call
        arguments: Optional arguments to pass to the tool
        read_timeout_seconds: Optional timeout for the tool call

    Returns:
        MCPToolResult: The result of the tool call
    """
    self._log_debug_with_thread("calling MCP tool '%s' synchronously with tool_use_id=%s", name, tool_use_id)
    if not self._is_session_active():
        raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

    async def _call_tool_async() -> MCPCallToolResult:
        return await cast(ClientSession, self._background_thread_session).call_tool(
            name, arguments, read_timeout_seconds
        )

    try:
        call_tool_result: MCPCallToolResult = self._invoke_on_background_thread(_call_tool_async()).result()
        return self._handle_tool_result(tool_use_id, call_tool_result)
    except Exception as e:
        logger.exception("tool execution failed")
        return self._handle_tool_execution_error(tool_use_id, e)

get_prompt_sync(prompt_id, args)

Synchronously retrieves a prompt from the MCP server.

Parameters:

Name Type Description Default
prompt_id str

The ID of the prompt to retrieve

required
args dict[str, Any]

Optional arguments to pass to the prompt

required

Returns:

Name Type Description
GetPromptResult GetPromptResult

The prompt response from the MCP server

Source code in strands/tools/mcp/mcp_client.py
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
def get_prompt_sync(self, prompt_id: str, args: dict[str, Any]) -> GetPromptResult:
    """Synchronously retrieves a prompt from the MCP server.

    Args:
        prompt_id: The ID of the prompt to retrieve
        args: Optional arguments to pass to the prompt

    Returns:
        GetPromptResult: The prompt response from the MCP server
    """
    self._log_debug_with_thread("getting MCP prompt synchronously")
    if not self._is_session_active():
        raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

    async def _get_prompt_async() -> GetPromptResult:
        return await cast(ClientSession, self._background_thread_session).get_prompt(prompt_id, arguments=args)

    get_prompt_result: GetPromptResult = self._invoke_on_background_thread(_get_prompt_async()).result()
    self._log_debug_with_thread("received prompt from MCP server")

    return get_prompt_result

list_prompts_sync(pagination_token=None)

Synchronously retrieves the list of available prompts from the MCP server.

This method calls the asynchronous list_prompts method on the MCP session and returns the raw ListPromptsResult with pagination support.

Parameters:

Name Type Description Default
pagination_token Optional[str]

Optional token for pagination

None

Returns:

Name Type Description
ListPromptsResult ListPromptsResult

The raw MCP response containing prompts and pagination info

Source code in strands/tools/mcp/mcp_client.py
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
def list_prompts_sync(self, pagination_token: Optional[str] = None) -> ListPromptsResult:
    """Synchronously retrieves the list of available prompts from the MCP server.

    This method calls the asynchronous list_prompts method on the MCP session
    and returns the raw ListPromptsResult with pagination support.

    Args:
        pagination_token: Optional token for pagination

    Returns:
        ListPromptsResult: The raw MCP response containing prompts and pagination info
    """
    self._log_debug_with_thread("listing MCP prompts synchronously")
    if not self._is_session_active():
        raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

    async def _list_prompts_async() -> ListPromptsResult:
        return await cast(ClientSession, self._background_thread_session).list_prompts(cursor=pagination_token)

    list_prompts_result: ListPromptsResult = self._invoke_on_background_thread(_list_prompts_async()).result()
    self._log_debug_with_thread("received %d prompts from MCP server", len(list_prompts_result.prompts))
    for prompt in list_prompts_result.prompts:
        self._log_debug_with_thread(prompt.name)

    return list_prompts_result

list_tools_sync(pagination_token=None, prefix=None, tool_filters=None)

Synchronously retrieves the list of available tools from the MCP server.

This method calls the asynchronous list_tools method on the MCP session and adapts the returned tools to the AgentTool interface.

Parameters:

Name Type Description Default
pagination_token str | None

Optional token for pagination

None
prefix str | None

Optional prefix to apply to tool names. If None, uses constructor default. If explicitly provided (including empty string), overrides constructor default.

None
tool_filters ToolFilters | None

Optional filters to apply to tools. If None, uses constructor default. If explicitly provided (including empty dict), overrides constructor default.

None

Returns:

Type Description
PaginatedList[MCPAgentTool]

List[AgentTool]: A list of available tools adapted to the AgentTool interface

Source code in strands/tools/mcp/mcp_client.py
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
def list_tools_sync(
    self,
    pagination_token: str | None = None,
    prefix: str | None = None,
    tool_filters: ToolFilters | None = None,
) -> PaginatedList[MCPAgentTool]:
    """Synchronously retrieves the list of available tools from the MCP server.

    This method calls the asynchronous list_tools method on the MCP session
    and adapts the returned tools to the AgentTool interface.

    Args:
        pagination_token: Optional token for pagination
        prefix: Optional prefix to apply to tool names. If None, uses constructor default.
               If explicitly provided (including empty string), overrides constructor default.
        tool_filters: Optional filters to apply to tools. If None, uses constructor default.
                     If explicitly provided (including empty dict), overrides constructor default.

    Returns:
        List[AgentTool]: A list of available tools adapted to the AgentTool interface
    """
    self._log_debug_with_thread("listing MCP tools synchronously")
    if not self._is_session_active():
        raise MCPClientInitializationError(CLIENT_SESSION_NOT_RUNNING_ERROR_MESSAGE)

    effective_prefix = self._prefix if prefix is None else prefix
    effective_filters = self._tool_filters if tool_filters is None else tool_filters

    async def _list_tools_async() -> ListToolsResult:
        return await cast(ClientSession, self._background_thread_session).list_tools(cursor=pagination_token)

    list_tools_response: ListToolsResult = self._invoke_on_background_thread(_list_tools_async()).result()
    self._log_debug_with_thread("received %d tools from MCP server", len(list_tools_response.tools))

    mcp_tools = []
    for tool in list_tools_response.tools:
        # Apply prefix if specified
        if effective_prefix:
            prefixed_name = f"{effective_prefix}_{tool.name}"
            mcp_tool = MCPAgentTool(tool, self, name_override=prefixed_name)
            logger.debug("tool_rename=<%s->%s> | renamed tool", tool.name, prefixed_name)
        else:
            mcp_tool = MCPAgentTool(tool, self)

        # Apply filters if specified
        if self._should_include_tool_with_filters(mcp_tool, effective_filters):
            mcp_tools.append(mcp_tool)

    self._log_debug_with_thread("successfully adapted %d MCP tools", len(mcp_tools))
    return PaginatedList[MCPAgentTool](mcp_tools, token=list_tools_response.nextCursor)

load_tools(**kwargs) async

Load and return tools from the MCP server.

This method implements the ToolProvider interface by loading tools from the MCP server and caching them for reuse.

Parameters:

Name Type Description Default
**kwargs Any

Additional arguments for future compatibility.

{}

Returns:

Type Description
Sequence[AgentTool]

List of AgentTool instances from the MCP server.

Source code in strands/tools/mcp/mcp_client.py
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
async def load_tools(self, **kwargs: Any) -> Sequence[AgentTool]:
    """Load and return tools from the MCP server.

    This method implements the ToolProvider interface by loading tools
    from the MCP server and caching them for reuse.

    Args:
        **kwargs: Additional arguments for future compatibility.

    Returns:
        List of AgentTool instances from the MCP server.
    """
    logger.debug(
        "started=<%s>, cached_tools=<%s> | loading tools",
        self._tool_provider_started,
        self._loaded_tools is not None,
    )

    if not self._tool_provider_started:
        try:
            logger.debug("starting MCP client")
            self.start()
            self._tool_provider_started = True
            logger.debug("MCP client started successfully")
        except Exception as e:
            logger.error("error=<%s> | failed to start MCP client", e)
            raise ToolProviderException(f"Failed to start MCP client: {e}") from e

    if self._loaded_tools is None:
        logger.debug("loading tools from MCP server")
        self._loaded_tools = []
        pagination_token = None
        page_count = 0

        while True:
            logger.debug("page=<%d>, token=<%s> | fetching tools page", page_count, pagination_token)
            # Use constructor defaults for prefix and filters in load_tools
            paginated_tools = self.list_tools_sync(
                pagination_token, prefix=self._prefix, tool_filters=self._tool_filters
            )

            # Tools are already filtered by list_tools_sync, so add them all
            for tool in paginated_tools:
                self._loaded_tools.append(tool)

            logger.debug(
                "page=<%d>, page_tools=<%d>, total_filtered=<%d> | processed page",
                page_count,
                len(paginated_tools),
                len(self._loaded_tools),
            )

            pagination_token = paginated_tools.pagination_token
            page_count += 1

            if pagination_token is None:
                break

        logger.debug("final_tools=<%d> | loading complete", len(self._loaded_tools))

    return self._loaded_tools

remove_consumer(consumer_id, **kwargs)

Remove a consumer from this tool provider.

This method is idempotent - calling it multiple times with the same ID has no additional effect after the first call.

Synchronous to prevent GC deadlocks when called from Agent finalizers. Uses existing synchronous stop() method for safe cleanup.

Source code in strands/tools/mcp/mcp_client.py
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
def remove_consumer(self, consumer_id: Any, **kwargs: Any) -> None:
    """Remove a consumer from this tool provider.

    This method is idempotent - calling it multiple times with the same ID
    has no additional effect after the first call.

    Synchronous to prevent GC deadlocks when called from Agent finalizers.
    Uses existing synchronous stop() method for safe cleanup.
    """
    self._consumers.discard(consumer_id)
    logger.debug("removed provider consumer, count=%d", len(self._consumers))

    if not self._consumers and self._tool_provider_started:
        logger.debug("no consumers remaining, cleaning up")
        try:
            self.stop(None, None, None)  # Existing sync method - safe for finalizers
            self._tool_provider_started = False
            self._loaded_tools = None
        except Exception as e:
            logger.error("error=<%s> | failed to cleanup MCP client", e)
            raise ToolProviderException(f"Failed to cleanup MCP client: {e}") from e

start()

Starts the background thread and waits for initialization.

This method starts the background thread that manages the MCP connection and blocks until the connection is ready or times out.

Returns:

Name Type Description
self MCPClient

The MCPClient instance

Raises:

Type Description
Exception

If the MCP connection fails to initialize within the timeout period

Source code in strands/tools/mcp/mcp_client.py
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def start(self) -> "MCPClient":
    """Starts the background thread and waits for initialization.

    This method starts the background thread that manages the MCP connection
    and blocks until the connection is ready or times out.

    Returns:
        self: The MCPClient instance

    Raises:
        Exception: If the MCP connection fails to initialize within the timeout period
    """
    if self._is_session_active():
        raise MCPClientInitializationError("the client session is currently running")

    self._log_debug_with_thread("entering MCPClient context")
    self._background_thread = threading.Thread(target=self._background_task, args=[], daemon=True)
    self._background_thread.start()
    self._log_debug_with_thread("background thread started, waiting for ready event")
    try:
        # Blocking main thread until session is initialized in other thread or if the thread stops
        self._init_future.result(timeout=self._startup_timeout)
        self._log_debug_with_thread("the client initialization was successful")
    except futures.TimeoutError as e:
        logger.exception("client initialization timed out")
        # Pass None for exc_type, exc_val, exc_tb since this isn't a context manager exit
        self.stop(None, None, None)
        raise MCPClientInitializationError(
            f"background thread did not start in {self._startup_timeout} seconds"
        ) from e
    except Exception as e:
        logger.exception("client failed to initialize")
        # Pass None for exc_type, exc_val, exc_tb since this isn't a context manager exit
        self.stop(None, None, None)
        raise MCPClientInitializationError("the client initialization failed") from e
    return self

stop(exc_type, exc_val, exc_tb)

Signals the background thread to stop and waits for it to complete, ensuring proper cleanup of all resources.

This method is defensive and can handle partial initialization states that may occur if start() fails partway through initialization.

Resources to cleanup: - _background_thread: Thread running the async event loop - _background_thread_session: MCP ClientSession (auto-closed by context manager) - _background_thread_event_loop: AsyncIO event loop in background thread - _close_future: AsyncIO future to signal thread shutdown - _close_exception: Exception that caused the background thread shutdown; None if a normal shutdown occurred. - _init_future: Future for initialization synchronization

Cleanup order: 1. Signal close future to background thread (if session initialized) 2. Wait for background thread to complete 3. Reset all state for reuse

Parameters:

Name Type Description Default
exc_type Optional[BaseException]

Exception type if an exception was raised in the context

required
exc_val Optional[BaseException]

Exception value if an exception was raised in the context

required
exc_tb Optional[TracebackType]

Exception traceback if an exception was raised in the context

required
Source code in strands/tools/mcp/mcp_client.py
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
def stop(
    self, exc_type: Optional[BaseException], exc_val: Optional[BaseException], exc_tb: Optional[TracebackType]
) -> None:
    """Signals the background thread to stop and waits for it to complete, ensuring proper cleanup of all resources.

    This method is defensive and can handle partial initialization states that may occur
    if start() fails partway through initialization.

    Resources to cleanup:
    - _background_thread: Thread running the async event loop
    - _background_thread_session: MCP ClientSession (auto-closed by context manager)
    - _background_thread_event_loop: AsyncIO event loop in background thread
    - _close_future: AsyncIO future to signal thread shutdown
    - _close_exception: Exception that caused the background thread shutdown; None if a normal shutdown occurred.
    - _init_future: Future for initialization synchronization

    Cleanup order:
    1. Signal close future to background thread (if session initialized)
    2. Wait for background thread to complete
    3. Reset all state for reuse

    Args:
        exc_type: Exception type if an exception was raised in the context
        exc_val: Exception value if an exception was raised in the context
        exc_tb: Exception traceback if an exception was raised in the context
    """
    self._log_debug_with_thread("exiting MCPClient context")

    # Only try to signal close future if we have a background thread
    if self._background_thread is not None:
        # Signal close future if event loop exists
        if self._background_thread_event_loop is not None:

            async def _set_close_event() -> None:
                if self._close_future and not self._close_future.done():
                    self._close_future.set_result(None)

            # Not calling _invoke_on_background_thread since the session does not need to exist
            # we only need the thread and event loop to exist.
            asyncio.run_coroutine_threadsafe(coro=_set_close_event(), loop=self._background_thread_event_loop)

        self._log_debug_with_thread("waiting for background thread to join")
        self._background_thread.join()

    if self._background_thread_event_loop is not None:
        self._background_thread_event_loop.close()

    self._log_debug_with_thread("background thread is closed, MCPClient context exited")

    # Reset fields to allow instance reuse
    self._init_future = futures.Future()
    self._background_thread = None
    self._background_thread_session = None
    self._background_thread_event_loop = None
    self._session_id = uuid.uuid4()
    self._loaded_tools = None
    self._tool_provider_started = False
    self._consumers = set()

    if self._close_exception:
        exception = self._close_exception
        self._close_exception = None
        raise RuntimeError("Connection to the MCP server was closed") from exception

ToolResultEvent

Bases: TypedEvent

Event emitted when a tool execution completes.

Source code in strands/types/_events.py
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
class ToolResultEvent(TypedEvent):
    """Event emitted when a tool execution completes."""

    def __init__(self, tool_result: ToolResult) -> None:
        """Initialize with the completed tool result.

        Args:
            tool_result: Final result from the tool execution
        """
        super().__init__({"type": "tool_result", "tool_result": tool_result})

    @property
    def tool_use_id(self) -> str:
        """The toolUseId associated with this result."""
        return cast(ToolResult, self.get("tool_result"))["toolUseId"]

    @property
    def tool_result(self) -> ToolResult:
        """Final result from the completed tool execution."""
        return cast(ToolResult, self.get("tool_result"))

    @property
    @override
    def is_callback_event(self) -> bool:
        return False

tool_result property

Final result from the completed tool execution.

tool_use_id property

The toolUseId associated with this result.

__init__(tool_result)

Initialize with the completed tool result.

Parameters:

Name Type Description Default
tool_result ToolResult

Final result from the tool execution

required
Source code in strands/types/_events.py
278
279
280
281
282
283
284
def __init__(self, tool_result: ToolResult) -> None:
    """Initialize with the completed tool result.

    Args:
        tool_result: Final result from the tool execution
    """
    super().__init__({"type": "tool_result", "tool_result": tool_result})

ToolSpec

Bases: TypedDict

Specification for a tool that can be used by an agent.

Attributes:

Name Type Description
description str

A human-readable description of what the tool does.

inputSchema JSONSchema

JSON Schema defining the expected input parameters.

name str

The unique name of the tool.

outputSchema NotRequired[JSONSchema]

Optional JSON Schema defining the expected output format. Note: Not all model providers support this field. Providers that don't support it should filter it out before sending to their API.

Source code in strands/types/tools.py
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
class ToolSpec(TypedDict):
    """Specification for a tool that can be used by an agent.

    Attributes:
        description: A human-readable description of what the tool does.
        inputSchema: JSON Schema defining the expected input parameters.
        name: The unique name of the tool.
        outputSchema: Optional JSON Schema defining the expected output format.
            Note: Not all model providers support this field. Providers that don't
            support it should filter it out before sending to their API.
    """

    description: str
    inputSchema: JSONSchema
    name: str
    outputSchema: NotRequired[JSONSchema]

ToolUse

Bases: TypedDict

A request from the model to use a specific tool with the provided input.

Attributes:

Name Type Description
input Any

The input parameters for the tool. Can be any JSON-serializable type.

name str

The name of the tool to invoke.

toolUseId str

A unique identifier for this specific tool use request.

Source code in strands/types/tools.py
52
53
54
55
56
57
58
59
60
61
62
63
64
class ToolUse(TypedDict):
    """A request from the model to use a specific tool with the provided input.

    Attributes:
        input: The input parameters for the tool.
            Can be any JSON-serializable type.
        name: The name of the tool to invoke.
        toolUseId: A unique identifier for this specific tool use request.
    """

    input: Any
    name: str
    toolUseId: str