Gemini¶
Google Gemini is Google's family of multimodal large language models designed for advanced reasoning, code generation, and creative tasks. The Strands Agents SDK implements a Gemini provider, allowing you to run agents against the Gemini models available through Google's AI API.
Installation¶
Gemini is configured as an optional dependency in Strands Agents.
To install it, run:
Usage¶
After installing strands-agents[gemini]
, you can import and initialize the Strands Agents' Gemini provider as follows:
from strands import Agent
from strands.models.gemini import GeminiModel
from strands_tools import calculator
model = GeminiModel(
client_args={
"api_key": "<KEY>",
},
# **model_config
model_id="gemini-2.5-flash",
params={
# some sample model parameters
"temperature": 0.7,
"max_output_tokens": 2048,
"top_p": 0.9,
"top_k": 40
}
)
agent = Agent(model=model, tools=[calculator])
response = agent("What is 2+2")
print(response)
Configuration¶
Client Configuration¶
The client_args
configure the underlying Google GenAI client. For a complete list of available arguments, please refer to the Google GenAI documentation.
Model Configuration¶
The model_config
configures the underlying model selected for inference. The supported configurations are:
Parameter | Description | Example | Options |
---|---|---|---|
model_id |
ID of a Gemini model to use | "gemini-2.5-flash" |
Available models |
params |
Model specific parameters | {"temperature": 0.7, "maxOutputTokens": 2048} |
Parameter reference |
Model Parameters¶
For a complete list of supported parameters, see the Gemini API documentation.
Common Parameters:
| Parameter | Description | Type |
|-----------|-------------|------|
| temperature
| Controls randomness in responses | float
|
| max_output_tokens
| Maximum tokens to generate | int
|
| top_p
| Nucleus sampling parameter | float
|
| top_k
| Top-k sampling parameter | int
|
| candidate_count
| Number of response candidates | int
|
| stop_sequences
| Custom stopping sequences | list[str]
|
Example:
params = {
"temperature": 0.8,
"max_output_tokens": 4096,
"top_p": 0.95,
"top_k": 40,
"candidate_count": 1,
"stop_sequences": ['STOP!']
}
Available Models¶
For a complete list of supported models, see the Gemini API documentation.
Popular Models:
- gemini-2.5-pro
- Most advanced model for complex reasoning and thinking
- gemini-2.5-flash
- Best balance of performance and cost
- gemini-2.5-flash-lite
- Most cost-efficient option
- gemini-2.0-flash
- Next-gen features with improved speed
- gemini-2.0-flash-lite
- Cost-optimized version of 2.0
Troubleshooting¶
Module Not Found¶
If you encounter the error ModuleNotFoundError: No module named 'google.genai'
, this means the google-genai
dependency hasn't been properly installed in your environment. To fix this, run pip install 'strands-agents[gemini]'
.
API Key Issues¶
Make sure your Google AI API key is properly set in client_args
or as the GOOGLE_API_KEY
environment variable. You can obtain an API key from the Google AI Studio.
Rate Limiting and Safety Issues¶
The Gemini provider handles several types of errors automatically:
- Safety/Content Policy: When content is blocked due to safety concerns, the model will return a safety message
- Rate Limiting: When quota limits are exceeded, a
ModelThrottledException
is raised - Server Errors: Temporary server issues are handled with appropriate error messages
from strands.types.exceptions import ModelThrottledException
try:
response = agent("Your query here")
except ModelThrottledException as e:
print(f"Rate limit exceeded: {e}")
# Implement backoff strategy
Advanced Features¶
Structured Output¶
Gemini models support structured output through their native JSON schema capabilities. When you use Agent.structured_output()
, the Strands SDK automatically converts your Pydantic models to Gemini's JSON schema format.
from pydantic import BaseModel, Field
from strands import Agent
from strands.models.gemini import GeminiModel
class MovieReview(BaseModel):
"""Analyze a movie review."""
title: str = Field(description="Movie title")
rating: int = Field(description="Rating from 1-10", ge=1, le=10)
genre: str = Field(description="Primary genre")
sentiment: str = Field(description="Overall sentiment: positive, negative, or neutral")
summary: str = Field(description="Brief summary of the review")
model = GeminiModel(
client_args={"api_key": "<KEY>"},
model_id="gemini-2.5-flash",
params={
"temperature": 0.3,
"max_output_tokens": 1024,
"top_p": 0.85
}
)
agent = Agent(model=model)
result = agent.structured_output(
MovieReview,
"""
Just watched "The Matrix" - what an incredible sci-fi masterpiece!
The groundbreaking visual effects and philosophical themes make this
a must-watch. Keanu Reeves delivers a solid performance. 9/10!
"""
)
print(f"Movie: {result.title}")
print(f"Rating: {result.rating}/10")
print(f"Genre: {result.genre}")
print(f"Sentiment: {result.sentiment}")
Multimodal Capabilities¶
Gemini models support text, image, and document inputs, making them ideal for multimodal applications:
from strands import Agent
from strands.models.gemini import GeminiModel
model = GeminiModel(
client_args={"api_key": "<KEY>"},
model_id="gemini-2.5-flash",
params={
"temperature": 0.5,
"max_output_tokens": 2048,
"top_p": 0.9
}
)
agent = Agent(model=model)
# Process image with text
response = agent([
{
"role": "user",
"content": [
{"text": "What do you see in this image?"},
{"image": {"format": "png", "source": {"bytes": image_bytes}}}
]
}
])
The implementation also supports document inputs:
response = agent([
{
"role": "user",
"content": [
{"text": "Summarize this document"},
{"document": {"format": "pdf", "source": {"bytes": document_bytes}}}
]
}
])
Supported formats: - Images: PNG, JPEG, GIF, WebP (automatically detected via MIME type) - Documents: PDF and other binary formats (automatically detected via MIME type)