Skip to content

Python Deployment to Docker

This guide covers deploying Python-based Strands agents using Docker for for local and cloud development.

Prerequisites

  • Python 3.10+
  • Docker installed and running
  • Model provider credentials

Quick Start Setup

Install uv:

curl -LsSf https://astral.sh/uv/install.sh | sh

Configure Model Provider Credentials:

export OPENAI_API_KEY='<your-api-key>'

Note: This example uses OpenAI, but any supported model provider can be configured. See the Strands documentation for all supported model providers.

For instance, to configure AWS credentials:

  export AWS_ACCESS_KEY_ID=<'your-access-key-id'>
  export AWS_SECRET_ACCESS_KEY='<your-secret-access-key'>

Project Setup

Open Quick Setup All-in-One Bash Command
Optional: Copy and paste this bash command to create your project with all necessary files and skip remaining "Project Setup" steps below:
setup_agent() {
mkdir my-python-agent && cd my-python-agent
uv init --python 3.11
uv add fastapi "uvicorn[standard]" pydantic strands-agents "strands-agents[openai]"

# Remove the auto-generated main.py
rm -f main.py

cat > agent.py << 'EOF'
from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any
from datetime import datetime, timezone
from strands import Agent
from strands.models.openai import OpenAIModel

app = FastAPI(title="Strands Agent Server", version="1.0.0")

# Note: Any supported model provider can be configured
# Automatically uses process.env.OPENAI_API_KEY
model = OpenAIModel(model_id="gpt-4o")

strands_agent = Agent(model=model)

class InvocationRequest(BaseModel):
    input: Dict[str, Any]

class InvocationResponse(BaseModel):
    output: Dict[str, Any]

@app.post("/invocations", response_model=InvocationResponse)
async def invoke_agent(request: InvocationRequest):
    try:
        user_message = request.input.get("prompt", "")
        if not user_message:
            raise HTTPException(
                status_code=400,
                detail="No prompt found in input. Please provide a 'prompt' key in the input."
            )

        result = strands_agent(user_message)
        response = {
            "message": result.message,
            "timestamp": datetime.now(timezone.utc).isoformat(),
            "model": "strands-agent",
        }

        return InvocationResponse(output=response)

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Agent processing failed: {str(e)}")

@app.get("/ping")
async def ping():
    return {"status": "healthy"}

def main():
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8080)

if __name__ == "__main__":
    main()
EOF

cat > Dockerfile << 'EOF'
# Use uv's Python base image
FROM ghcr.io/astral-sh/uv:python3.11-bookworm-slim

WORKDIR /app

# Copy uv files
COPY pyproject.toml uv.lock ./

# Install dependencies
RUN uv sync --frozen --no-cache

# Copy agent file
COPY agent.py ./

# Expose port
EXPOSE 8080

# Run application
CMD ["uv", "run", "python", "agent.py"]
EOF

echo "Setup complete! Project created in my-python-agent/"
}

setup_agent

Step 1: Create project directory and initialize

mkdir my-python-agent && cd my-python-agent
uv init --python 3.11

Step 2: Add dependencies

uv add fastapi "uvicorn[standard]" pydantic strands-agents "strands-agents[openai]"

Step 3: Create agent.py

from fastapi import FastAPI, HTTPException
from pydantic import BaseModel
from typing import Dict, Any
from datetime import datetime, timezone
from strands import Agent
from strands.models.openai import OpenAIModel

app = FastAPI(title="Strands Agent Server", version="1.0.0")

# Note: Any supported model provider can be configured
# Automatically uses process.env.OPENAI_API_KEY
model = OpenAIModel(model_id="gpt-4o")

strands_agent = Agent(model=model)

class InvocationRequest(BaseModel):
    input: Dict[str, Any]

class InvocationResponse(BaseModel):
    output: Dict[str, Any]

@app.post("/invocations", response_model=InvocationResponse)
async def invoke_agent(request: InvocationRequest):
    try:
        user_message = request.input.get("prompt", "")
        if not user_message:
            raise HTTPException(
                status_code=400,
                detail="No prompt found in input. Please provide a 'prompt' key in the input."
            )

        result = strands_agent(user_message)
        response = {
            "message": result.message,
            "timestamp": datetime.now(timezone.utc).isoformat(),
            "model": "strands-agent",
        }

        return InvocationResponse(output=response)

    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Agent processing failed: {str(e)}")

@app.get("/ping")
async def ping():
    return {"status": "healthy"}

def main():
    import uvicorn
    uvicorn.run(app, host="0.0.0.0", port=8080)

if __name__ == "__main__":
    main()

Step 4: Create Dockerfile

# Use uv's Python base image
FROM ghcr.io/astral-sh/uv:python3.11-bookworm-slim

WORKDIR /app

# Copy uv files
COPY pyproject.toml uv.lock ./

# Install dependencies
RUN uv sync --frozen --no-cache

# Copy agent file
COPY agent.py ./

# Expose port
EXPOSE 8080

# Run application
CMD ["uv", "run", "python", "agent.py"]

Your project structure will now look like:

my-python-agent/
├── agent.py                # FastAPI application
├── Dockerfile              # Container configuration
├── pyproject.toml          # Created by uv init
└── uv.lock                 # Created automatically by uv

Test Locally

Before deploying with Docker, test your application locally:

# Run the application
uv run python agent.py

# Test /ping endpoint
curl http://localhost:8080/ping

# Test /invocations endpoint
curl -X POST http://localhost:8080/invocations \
  -H "Content-Type: application/json" \
  -d '{ 
    "input": {"prompt": "What is artificial intelligence?"}
  }'

Deploy to Docker

Step 1: Build Docker Image

Build your Docker image:

docker build -t my-agent-image:latest .

Step 2: Run Docker Container

Run the container with model provider credentials:

docker run -p 8080:8080 \
  -e OPENAI_API_KEY=$OPENAI_API_KEY \
  my-agent-image:latest

This example uses OpenAI credentials by default, but any model provider credentials can be passed as environment variables when running the image. For instance, to pass AWS credentials:

docker run -p 8080:8080 \
  -e AWS_ACCESS_KEY_ID=$AWS_ACCESS_KEY_ID \
  -e AWS_SECRET_ACCESS_KEY=$AWS_SECRET_ACCESS_KEY \
  -e AWS_REGION=us-east-1 \
  my-agent-image:latest

Step 3: Test Your Deployment

Test the endpoints:

# Health check
curl http://localhost:8080/ping

# Test agent invocation
curl -X POST http://localhost:8080/invocations \
  -H "Content-Type: application/json" \
  -d '{"input": {"prompt": "What is artificial intelligence?"}}'

Step 4: Making Changes

When you modify your code, rebuild and run:

# Rebuild image
docker build -t my-agent-image:latest .

# Stop existing container (if running)
docker stop $(docker ps -q --filter ancestor=my-agent-image:latest)

# Run new container
docker run -p 8080:8080 \
  -e OPENAI_API_KEY=$OPENAI_API_KEY \
  my-agent-image:latest

Troubleshooting

  • Container not starting: Check logs with docker logs $(docker ps -q --filter ancestor=my-agent-image:latest)
  • Connection refused: Verify app is listening on 0.0.0.0:8080
  • Image build fails: Check pyproject.toml and dependencies
  • Port already in use: Use different port mapping -p 8081:8080

Docker Compose for Local Development

Optional: Docker Compose is only recommended for local development. Most cloud service providers only support raw Docker commands, not Docker Compose.

For local development and testing, Docker Compose provides a more convenient way to manage your container:

# Example for OpenAI
version: '3.8'
services:
  my-python-agent:
    build: .
    ports:
      - "8080:8080"
    environment:
      - OPENAI_API_KEY=<your-api-key>

Run with Docker Compose:

# Start services
docker-compose up --build

# Run in background
docker-compose up -d --build

# Stop services
docker-compose down

Optional: Deploy to Cloud Container Service

Once your application works locally with Docker, you can deploy it to any cloud-hosted container service. The Docker container you've created is the foundation for deploying to the cloud platform of your choice (AWS, GCP, Azure, etc).

Our other deployment guides build on this Docker foundation to show you how to deploy to specific cloud services:

Additional Resources