Skip to content

Amazon EKS Deployment Example

Introduction

This is an example that demonstrates how to deploy a Python application to Amazon EKS.
The example deploys a weather forecaster application that runs as a containerized service in Amazon EKS with an Application Load Balancer. The application is built with FastAPI and provides two weather endpoints:

  1. /weather - A standard endpoint that returns weather information based on the provided prompt
  2. /weather-streaming - A streaming endpoint that delivers weather information in real-time as it's being generated

Prerequisites

  • AWS CLI installed and configured
  • eksctl (v0.208.x or later) installed
  • Helm (v3 or later) installed
  • kubectl installed
  • Either:
    • Podman installed and running
    • (or) Docker installed and running
  • Amazon Bedrock Anthropic Claude 3.7 model enabled in your AWS environment
    You'll need to enable model access in the Amazon Bedrock console following the AWS documentation

Project Structure

  • chart/ - Contains the Helm chart
    • values.yaml - Helm chart default values
  • docker/ - Contains the Dockerfile and application code for the container:
    • Dockerfile - Docker image definition
    • app/ - Application code
    • requirements.txt - Python dependencies for the container & local development

Create EKS Auto Mode cluster

Set environment variables

export AWS_ACCOUNT_ID=$(aws sts get-caller-identity --query 'Account' --output text)
export AWS_REGION=us-east-1
export CLUSTER_NAME=eks-strands-agents-demo

Create EKS Auto Mode cluster

eksctl create cluster --name $CLUSTER_NAME --enable-auto-mode
Configure kubeconfig context
aws eks update-kubeconfig --name $CLUSTER_NAME

Building and Pushing Docker Image to ECR

Follow these steps to build the Docker image and push it to Amazon ECR:

  1. Authenticate to Amazon ECR:

    aws ecr get-login-password --region ${AWS_REGION} | docker login --username AWS --password-stdin ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com
    

  2. Create the ECR repository if it doesn't exist:

    aws ecr create-repository --repository-name strands-agents-weather --region ${AWS_REGION}
    

  3. Build the Docker image:

    docker build --platform linux/amd64 -t strands-agents-weather:latest docker/
    

  4. Tag the image for ECR:

    docker tag strands-agents-weather:latest ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/strands-agents-weather:latest
    

  5. Push the image to ECR:

    docker push ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/strands-agents-weather:latest
    

Configure EKS Pod Identity to access Amazon Bedrock

Create an IAM policy to allow InvokeModel & InvokeModelWithResponseStream to all Amazon Bedrock models

cat > bedrock-policy.json << EOF
{
  "Version": "2012-10-17",
  "Statement": [
    {
      "Effect": "Allow",
      "Action": [
        "bedrock:InvokeModel",
        "bedrock:InvokeModelWithResponseStream"
      ],
      "Resource": "*"
    }
  ]
}
EOF

aws iam create-policy \
  --policy-name strands-agents-weather-bedrock-policy \
  --policy-document file://bedrock-policy.json
rm -f bedrock-policy.json

Create an EKS Pod Identity association

eksctl create podidentityassociation --cluster $CLUSTER_NAME \
  --namespace default \
  --service-account-name strands-agents-weather \
  --permission-policy-arns arn:aws:iam::$AWS_ACCOUNT_ID:policy/strands-agents-weather-bedrock-policy \
  --role-name eks-strands-agents-weather

Deploy strands-agents-weather application

Deploy the helm chart with the image from ECR

helm install strands-agents-weather ./chart \
  --set image.repository=${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/strands-agents-weather --set image.tag=latest

Wait for Deployment to be available (Pods Running)

kubectl wait --for=condition=available deployments strands-agents-weather --all

Test the Agent

Using kubernetes port-forward

kubectl --namespace default port-forward service/strands-agents-weather 8080:80 &

Call the weather service

curl -X POST \
  http://localhost:8080/weather \
  -H 'Content-Type: application/json' \
  -d '{"prompt": "What is the weather in Seattle?"}'

Call the weather streaming endpoint

curl -X POST \
  http://localhost:8080/weather-streaming \
  -H 'Content-Type: application/json' \
  -d '{"prompt": "What is the weather in New York in Celsius?"}'

Expose Agent through Application Load Balancer

Create an IngressClass to configure an Application Load Balancer

cat <<EOF | kubectl apply -f -
apiVersion: eks.amazonaws.com/v1
kind: IngressClassParams
metadata:
  name: alb
spec:
  scheme: internet-facing
EOF

cat <<EOF | kubectl apply -f -
apiVersion: networking.k8s.io/v1
kind: IngressClass
metadata:
  name: alb
  annotations:
    ingressclass.kubernetes.io/is-default-class: "true"
spec:
  controller: eks.amazonaws.com/alb
  parameters:
    apiGroup: eks.amazonaws.com
    kind: IngressClassParams
    name: alb
EOF

Update helm deployment to create Ingress using the IngressClass created

helm upgrade strands-agents-weather ./chart \
  --set image.repository=${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/strands-agents-weather --set image.tag=latest \
  --set ingress.enabled=true \
  --set ingress.className=alb 

Get the ALB URL

export ALB_URL=$(kubectl get ingress strands-agents-weather -o jsonpath='{.status.loadBalancer.ingress[0].hostname}')
echo "The shared ALB is available at: http://$ALB_URL"

Wait for ALB to be active

aws elbv2 wait load-balancer-available --load-balancer-arns $(aws elbv2 describe-load-balancers --query 'LoadBalancers[?DNSName==`'"$ALB_URL"'`].LoadBalancerArn' --output text)

Call the weather service Application Load Balancer endpoint

curl -X POST \
  http://$ALB_URL/weather \
  -H 'Content-Type: application/json' \
  -d '{"prompt": "What is the weather in Portland?"}'

Configure High Availability and Resiliency

helm upgrade strands-agents-weather ./chart -f - <<EOF
image:
  repository: ${AWS_ACCOUNT_ID}.dkr.ecr.${AWS_REGION}.amazonaws.com/strands-agents-weather 
  tag: latest

ingress:
  enabled: true 
  className: alb

replicaCount: 3

topologySpreadConstraints:
  - maxSkew: 1
    minDomains: 3
    topologyKey: topology.kubernetes.io/zone
    whenUnsatisfiable: DoNotSchedule
    labelSelector:
      matchLabels:
        app.kubernetes.io/name: strands-agents-weather
  - maxSkew: 1
    topologyKey: kubernetes.io/hostname
    whenUnsatisfiable: ScheduleAnyway
    labelSelector:
      matchLabels:
        app.kubernetes.io/instance: strands-agents-weather

podDisruptionBudget:
  enabled: true
  minAvailable: 1
EOF

Cleanup

Uninstall helm chart

helm uninstall strands-agents-weather

Delete EKS Auto Mode cluster

eksctl delete cluster --name $CLUSTER_NAME --wait

Delete IAM policy

aws iam delete-policy --policy-arn arn:aws:iam::$AWS_ACCOUNT_ID:policy/strands-agents-weather-bedrock-policy